Multigrid solvers

M. M. Sussman

sussmanm@math.pitt.edu
Office Hours: 11:10AM-12:10PM, Thack 622

May 12 — June 19, 2014

Multigrid

Geometrical multigrid

/43

Multigrid

Geometrical multigrid
Introduction

43

Geometrical multigrid

» Simple iterative methods tend to damp high (spatial) frequency
errors fast.

» After a few smoothing steps of a simple method, map the current
error out to a coarser grid.

» Errors will have relatively higher spatial frequency there.
» Take a few more steps of a simple method on the coarser grid.

» Continue mapping to coarser grids until grid is coarse enough to
solve.

» Interpolate back to the next finer grid and do few smoothing steps
» Continue to the finest grid
» Repeat until converged.

Advantages of GMG

» Number of iterations should not depend on humber of mesh
points!

» Works very well as preconditioner for Krylov methods

43

Gauss-Seidel iterations

To solve an n x n matrix system,

Au=f

given an initial guess u(®, for k = 1,2, ...

k+1) <f _ ZA’IU(k+1

, set

n
> A

j=i+1

“) JAi

43

Gauss-Seidel starts fast, slows down

Error for first 100 iterations

100

43

Error gets smooth fast

Multiple 1D grids

10/43

Interpolation or prolongation

If a solution is known on a grid, how should it be transferred to the
next finer grid?

» For fine grid points that agree with coarse points, copy.
» For fine grid points between two coarse points, average.

11/43

Interpolation matrix 5 pts to 9 pts

.(J'I_k
o= o,

Poyxs =

o= o,

12/43

Restriction

If a solution is known on a fine grid, how should it be transferred to
the next coarser grid?

Ps.o = (Poxs)

» Maintain symmetry!
» Proofs fail without it!
» It works better this way.

13/43

Multigrid

Geometrical multigrid

Details of GMG

14/43

The V-cycle

Smooth

Smooth

Smooth

Smooth

Smooth

Smooth

Solve

[]

15/43

The V-cycle: Python code

def vcycle(A,f):
perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);

16/43

The V-cycle: Python code

def vcycle(A,f):
perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);
size for direct inversion < 15
if sizeF < 15:

v = la.solve (A, f)
return v

16/43

The V-cycle: Python code

def vcycle(A,f):
perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);

size for direct inversion < 15
if sizeF < 15:

v = la.solve (A, f)

return v

Nl=number of Gauss-Seidel iterations before coarsening
N1l = 5;
Vv = np.zeros (sizeF);
for numGS in range(N1):
for k in range (sizeF):
v[k] = (f[k] - np.dot (A[k,0:k], v[0:k]) \
-np.dot (A[k,k+1:], v[k+1:1)) / A[k,k];

16/43

The V-cycle: Python code

def vcycle(A,f):
perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);

size for direct inversion < 15
if sizeF < 15:

v = la.solve (A, f)

return v

Nl=number of Gauss-Seidel iterations before coarsening
N1l = 5;
Vv = np.zeros (sizeF);
for numGS in range(N1):
for k in range (sizeF):
v[k] = (f[k] - np.dot (A[k,0:k], v[0:k]) \
-np.dot (A[k,k+1:], v[k+1l:])) / A[k,k];

construct interpolation operator from next coarser to this mesh
next coarser has ((n-1)/2 + 1) points

assert (sizeF%2 ==1)

sizeC = (sizeF-1)/2 +1

P = np.zeros((sizeF,sizeC));

for k in range(sizeC):

P[2xk,k] = 1; # copy these points

for k in range(sizeC-1):
P[2xk+1,k] = .5; # average these points
P[2xk+1l,k+1] = .5;

16/43

The V-cycle: Python code contd

compute residual
residual = £ - np.dot (A, v)

17/43

The V-cycle: Python code contd

compute residual
residual = £ - np.dot (A, v)

project residual onto coarser mesh
residC = np.dot (P.transpose (), residual)

17/43

The V-cycle: Python code contd

compute residual
residual = £ - np.dot (A, v)

project residual onto coarser mesh
residC = np.dot (P.transpose (), residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot (P.transpose(),np.dot (A,P))

The V-cycle: Python code contd

compute residual
residual = £ - np.dot (A, v)

project residual onto coarser mesh
residC = np.dot (P.transpose (), residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot (P.transpose(),np.dot (A,P))

vC = vecycle (AC, residC);

17/43

The V-cycle: Python code cont'd

compute residual
residual = £ - np.dot (A, v)

project residual onto coarser mesh
residC = np.dot (P.transpose (), residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot (P.transpose(),np.dot (A,P))

vC = vecycle (AC, residC);

extend to this mesh
v = np.dot (P, vC)

The V-cycle: Python code cont'd

compute residual
residual = £ - np.dot (A, v)

project residual onto coarser mesh
residC = np.dot (P.transpose (), residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot (P.transpose(),np.dot (A,P))

vC = vecycle (AC, residC);

extend to this mesh
v = np.dot (P, vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range (N2):
for k in range(sizeF):
v[k] = (f[k] - np.dot (A[k,0:k], v[O0:k]) \
-np.dot (A[k,k+1:]1, v[k+1:]1)) / Alk,k];

43

The V-cycle: Python code cont'd

compute residual
residual = £ - np.dot (A, v)

project residual onto coarser mesh
residC = np.dot (P.transpose (), residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot (P.transpose(),np.dot (A,P))

vC = vecycle (AC, residC);

extend to this mesh
v = np.dot (P, vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range (N2):
for k in range(sizeF):
v[k] = (f[k] - np.dot (A[k,0:k], v[O0:k]) \
-np.dot (A[k,k+1:], v[k+1:])) / A[k, k];
return v

43

Solving with V-cycles gmgsolve.py

2%%x9+1
np.linspace(0,1,N);
x[1]1-x[0]

N
x
h

18/43

Solving with V-cycles gmgsolve.py

=]

PP

2%%x9+1
np.linspace(0,1,N);
x[1]1-x[0]

tridiagonal matrix
np.diag(2.*np.ones(N)) - np.diag(np.ones(N-1), 1)
A/h*x2

np.ones (N, dtype=float) #rhs

18/43

Solving with V-cycles gmgsolve.py

N = 2%%x9+1

x = np.linspace(0,1,N);

h = x[1]-x[0]

tridiagonal matrix

A = np.diag(2.*np.ones(N)) - np.diag(np.ones(N-1), 1)
A = A/hx*x2

H
]

np.ones (N, dtype=float) #rhs

udirect = la.solve(A, f) # correct solution

18/43

Solving with V-cycles gmgsolve.py

=]

P

2%%x9+1
np.linspace(0,1,N);
x[1]1-x[0]

tridiagonal matrix
= np.diag(2.*np.ones(N)) - np.diag(np.ones(N-1), 1)
A/h*x2

np.ones (N, dtype=float) #rhs

udirect = la.solve(A, f) # correct solution

u

= np.zeros (N) # initial guess

for iters in range(100):

r = £ - np.dot (A,u)
if la.norm(r)/la.norm(f) < 1l.e-10:

break
du = vcycle(A, r)
u += du

print "step %d, rel error=%e"% \
(iters+l, la.norm(u-udirect)/la.norm(udirect)

18/43

lterations and problem size

Number of iterations is independent of problem size!

Grid size | Number of iterations
33 20
65 21
129 22
257 22
513 22
1025 22
2049 22

19/43

Multigrid

Geometrical multigrid

Summary

20/43

What is needed for MG?

1. Sequence of grids

2. Intergrid transfer operators
3. Smoothing operator

4. Solver for coarsest grid

21/43

Multigrid

Algebraic multigrid

22/43

Multigrid

Algebraic multigrid
Introduction

23/43

References

» Ruge, J. W., Stiiben, K., “Algebraic Multigrid,” Chapt. 4 in
McCormick, S. G., Multigrid Methods, Frontiers in Applied
Mathematics, Vol. 4, SIAM, 1987.

» Briggs, W. L., Hensen, V. E., McCormick, S. F., A Multigrid
Tutorial, Second Edition, SIAM, 2000.

» Trottenberg, U., Oosterlee, C. W., Schiller, A., Multigrid,
Appendix A by Stiiben, K., Academic Press, 2001.

24/43

What is a “grid”?

» Every matrix has an assoicated graph

2
1100 1 1
11100

0110 1

00010 o
1010 1

» Given a matrix, the finest grid is its associated graph.

25/43

Multigrid

Algebraic multigrid

Grid coarsening and interpolation

26/43

What does “smooth” mean?

» In GMG, we have a notion of “smooth” error and notice that
Gauss-Seidel iteration makes rough errors smoother.

» Gauss-Seidel makes very rough errors smooth rapidly, then
stalls.

27/43

What does “smooth” mean?

» In GMG, we have a notion of “smooth” error and notice that
Gauss-Seidel iteration makes rough errors smoother.

» Gauss-Seidel makes very rough errors smooth rapidly, then
stalls.

» In AMG, we define a “rough” error as one that Gauss-Seidel is
effective in reducing and a “smooth” error as one on which
Gauss-Seidel stalls.

» Loosely speaking, an error is “smooth” when Ae =~ 0.
> qjie ~ — Zi;éj a;j€;

43

Simplifying assumption

From now on, assume that the matrix A is a symmetric M-matrix.

1. Diagonal elements are positive, off-diagonal are 0 or negative
2. Diagonal > —(sum of off-diagonals)

» Original work on AMG was done for M-matrices.
» Some proofs are possible.

28/43

How to construct a coarse grid from a fine one.

v

Define the notion of “strong dependence” (“influence”,
“coupling”).

Break the mesh up into regions in which each point is strongly
dependent on a few distinguished points.

The distinguished points will be the coarse mesh points.

The coarse-to-fine mesh interpolation will be based on strong
dependence.

v

v

v

29/43

Strong dependence

Def. 1 Given a threshold 0 < 6 < 1, the variable u; “strongly
depends” on the variable v; if

—a; > erwglx{—a,-k}

Def. 2 If the variable u; strongly depends on the variable u;,
then the variable u; “strongly influences” u;.

30/43

Important feature of strong dependence

» Smooth error varies slowly in the direction of strong connection
» (See the discussion in Briggs, Henson, McCormick)

31/43

Coarsening

» Suppose you have a given fine grid
» Divide into C-points and F-points
» C-points will be next coarser grid

32/43

Coarsening

Requirements for C-points include
» Smooth error can be approximated accurately
» Smooth functions can be interpolated accurately
» Substantilly fewer points

33/43

Definitions

» Neighborhood N; is the set of all points j with a;; # 0
» S;is the set of all points that strongly influence i
» C; is the set of C-points that strongly influence i

34/43

Coarsening heuristics

H-1 For each F-point i, every point j € S; that strongly
influences i either should be in C; or should strongly
depend on at least one point in C;

H-1a (Aggressive coarsening) For each F-point i, every point
j € S; that strongly influences i either should be in C or
should strongly depend on at least one pointin C

H-2 The set of all coarse points C should be a maximal
subset of all points with the property that no C-point
strongly depends on another C-point.

35/43

Example

O—O
O—0O
N7
N

N
AN

O—C—0O—0

O—0O0——C0CO——0

Mesh with strong couplings

36/43

Example

NN
(3/ \‘i/u\:
N D
O—0E——~®
@—GE)—0O)

Values

36/43

Example

—C0O—0O—0
&—0 O
O—0O 00
@ (3) (3) @

C and F points

Example

©
O
O

©—O O
©—O0—0—0

Increment remaining values

37/43

Example

O

o
()
-/

()
-/

p
-/

Pick another C point

©

Example

O
O
O

o O O
O—COC—0O—"0

©
®
»)
©

Increment value

38/43

Example

O
O
O

o O O
O—0O 00

O— @O

Two more C points
Hypothesis 1 failures in red
Aggressive coarsining finishes here.

39/43

Example: final (standard) coarsening

O O—0
o O O
‘ (J ' \)

O
®
O
o

40/43

Aggressive Coarsening

» Results in a coarser mesh but slower convergence.

» Can be using on only some levels

» Requires a different interpolation formula, with longer-range
couplings

41/43

Interpolation from F to C

» Want -
e; I €
(Pcxre)i = { :
X ZjeC,- W,-,-e,- ieF
» Error is smooth on F = residual is small

ai~—)_ aje

JEN;

v

N? is strongly-coupled F points, NV is weakly

ai~ - ajg— Y ajg— > aje

jeS; JENS JENV

v

Put weakly-coupled F points into diagonal

@i+ > apei~—Y aje— Y a

jENW JES; jENS

42/43

Strongly-coupled F points get distributed

» Distribute N,-s points to all of S;. For j € N,.S,

 2kec, ke
e,- ~ —""—"
> ke, Ak

» Hence

43/43

	Geometrical multigrid
	Introduction
	Details of GMG
	Summary

	Algebraic multigrid
	Introduction
	Grid coarsening and interpolation

