
Multigrid solvers

M. M. Sussman
sussmanm@math.pitt.edu

Office Hours: 11:10AM-12:10PM, Thack 622

May 12 – June 19, 2014

1 / 43

Multigrid

Geometrical multigrid
Introduction
Details of GMG
Summary

Algebraic multigrid
Introduction
Grid coarsening and interpolation

2 / 43

Multigrid

Geometrical multigrid
Introduction
Details of GMG
Summary

Algebraic multigrid
Introduction
Grid coarsening and interpolation

3 / 43

Geometrical multigrid

I Simple iterative methods tend to damp high (spatial) frequency
errors fast.

I After a few smoothing steps of a simple method, map the current
error out to a coarser grid.

I Errors will have relatively higher spatial frequency there.
I Take a few more steps of a simple method on the coarser grid.
I Continue mapping to coarser grids until grid is coarse enough to

solve.
I Interpolate back to the next finer grid and do few smoothing steps
I Continue to the finest grid
I Repeat until converged.

4 / 43

Advantages of GMG

I Number of iterations should not depend on number of mesh
points!

I Works very well as preconditioner for Krylov methods

5 / 43

Gauss-Seidel iterations

To solve an n × n matrix system,

Au = f

given an initial guess u(0), for k = 1,2, . . . , set

u(k+1)
i =

fi −
i−1∑
j=1

Aiju
(k+1)
j −

n∑
j=i+1

Aiju
(k)
j

 /Aii

6 / 43

Gauss-Seidel starts fast, slows down

7 / 43

Error gets smooth fast

8 / 43

Error gets smooth fast

9 / 43

Multiple 1D grids

s s s s s s s s s s s s s s s s s
s s s s s s s s s
s s s s s
s s s

10 / 43

Interpolation or prolongation

If a solution is known on a grid, how should it be transferred to the
next finer grid?

I For fine grid points that agree with coarse points, copy.
I For fine grid points between two coarse points, average.

11 / 43

Interpolation matrix 5 pts to 9 pts

P9×5 =



1
.5 .5

1
.5 .5

1
.5 .5

1
.5 .5

1



12 / 43

Restriction

If a solution is known on a fine grid, how should it be transferred to
the next coarser grid?

P5×9 = (P9×5)
T

I Maintain symmetry!
I Proofs fail without it!
I It works better this way.

13 / 43

Multigrid

Geometrical multigrid
Introduction
Details of GMG
Summary

Algebraic multigrid
Introduction
Grid coarsening and interpolation

14 / 43

The V-cycle

Smooth
A
AU

Smooth
A
AU

Smooth
A
AU

Solve
�
��

Smooth
�
��

Smooth
�
��

Smooth

s s s s s s s s s s s s s s s s s
s s s s s s s s s
s s s s s
s s s

15 / 43

The V-cycle: Python code
def vcycle(A,f):

perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);

size for direct inversion < 15
if sizeF < 15:

v = la.solve(A,f)
return v

N1=number of Gauss-Seidel iterations before coarsening
N1 = 5;
v = np.zeros(sizeF);
for numGS in range(N1):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];

construct interpolation operator from next coarser to this mesh
next coarser has ((n-1)/2 + 1) points
assert(sizeF%2 ==1)
sizeC = (sizeF-1)/2 +1
P = np.zeros((sizeF,sizeC));
for k in range(sizeC):

P[2*k,k] = 1; # copy these points
for k in range(sizeC-1):

P[2*k+1,k] = .5; # average these points
P[2*k+1,k+1] = .5;

16 / 43

The V-cycle: Python code
def vcycle(A,f):

perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);

size for direct inversion < 15
if sizeF < 15:

v = la.solve(A,f)
return v

N1=number of Gauss-Seidel iterations before coarsening
N1 = 5;
v = np.zeros(sizeF);
for numGS in range(N1):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];

construct interpolation operator from next coarser to this mesh
next coarser has ((n-1)/2 + 1) points
assert(sizeF%2 ==1)
sizeC = (sizeF-1)/2 +1
P = np.zeros((sizeF,sizeC));
for k in range(sizeC):

P[2*k,k] = 1; # copy these points
for k in range(sizeC-1):

P[2*k+1,k] = .5; # average these points
P[2*k+1,k+1] = .5;

16 / 43

The V-cycle: Python code
def vcycle(A,f):

perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);

size for direct inversion < 15
if sizeF < 15:

v = la.solve(A,f)
return v

N1=number of Gauss-Seidel iterations before coarsening
N1 = 5;
v = np.zeros(sizeF);
for numGS in range(N1):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];

construct interpolation operator from next coarser to this mesh
next coarser has ((n-1)/2 + 1) points
assert(sizeF%2 ==1)
sizeC = (sizeF-1)/2 +1
P = np.zeros((sizeF,sizeC));
for k in range(sizeC):

P[2*k,k] = 1; # copy these points
for k in range(sizeC-1):

P[2*k+1,k] = .5; # average these points
P[2*k+1,k+1] = .5;

16 / 43

The V-cycle: Python code
def vcycle(A,f):

perform one v-cycle on the matrix A

sizeF = np.size(A,axis=0);

size for direct inversion < 15
if sizeF < 15:

v = la.solve(A,f)
return v

N1=number of Gauss-Seidel iterations before coarsening
N1 = 5;
v = np.zeros(sizeF);
for numGS in range(N1):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];

construct interpolation operator from next coarser to this mesh
next coarser has ((n-1)/2 + 1) points
assert(sizeF%2 ==1)
sizeC = (sizeF-1)/2 +1
P = np.zeros((sizeF,sizeC));
for k in range(sizeC):

P[2*k,k] = 1; # copy these points
for k in range(sizeC-1):

P[2*k+1,k] = .5; # average these points
P[2*k+1,k+1] = .5;

16 / 43

The V-cycle: Python code cont’d

compute residual
residual = f - np.dot(A,v)

project residual onto coarser mesh
residC = np.dot(P.transpose(),residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot(P.transpose(),np.dot(A,P))

vC = vcycle(AC,residC);

extend to this mesh
v = np.dot(P,vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range(N2):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];
return v

17 / 43

The V-cycle: Python code cont’d

compute residual
residual = f - np.dot(A,v)

project residual onto coarser mesh
residC = np.dot(P.transpose(),residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot(P.transpose(),np.dot(A,P))

vC = vcycle(AC,residC);

extend to this mesh
v = np.dot(P,vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range(N2):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];
return v

17 / 43

The V-cycle: Python code cont’d

compute residual
residual = f - np.dot(A,v)

project residual onto coarser mesh
residC = np.dot(P.transpose(),residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot(P.transpose(),np.dot(A,P))

vC = vcycle(AC,residC);

extend to this mesh
v = np.dot(P,vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range(N2):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];
return v

17 / 43

The V-cycle: Python code cont’d

compute residual
residual = f - np.dot(A,v)

project residual onto coarser mesh
residC = np.dot(P.transpose(),residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot(P.transpose(),np.dot(A,P))

vC = vcycle(AC,residC);

extend to this mesh
v = np.dot(P,vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range(N2):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];
return v

17 / 43

The V-cycle: Python code cont’d

compute residual
residual = f - np.dot(A,v)

project residual onto coarser mesh
residC = np.dot(P.transpose(),residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot(P.transpose(),np.dot(A,P))

vC = vcycle(AC,residC);

extend to this mesh
v = np.dot(P,vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range(N2):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];
return v

17 / 43

The V-cycle: Python code cont’d

compute residual
residual = f - np.dot(A,v)

project residual onto coarser mesh
residC = np.dot(P.transpose(),residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot(P.transpose(),np.dot(A,P))

vC = vcycle(AC,residC);

extend to this mesh
v = np.dot(P,vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range(N2):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];

return v

17 / 43

The V-cycle: Python code cont’d

compute residual
residual = f - np.dot(A,v)

project residual onto coarser mesh
residC = np.dot(P.transpose(),residual)

Find coarser matrix (sizeC X sizeC)
AC = np.dot(P.transpose(),np.dot(A,P))

vC = vcycle(AC,residC);

extend to this mesh
v = np.dot(P,vC)

N2=number of Gauss-Seidel iterations after coarsening
N2 = 5;
for numGS in range(N2):

for k in range(sizeF):
v[k] = (f[k] - np.dot(A[k,0:k], v[0:k]) \

-np.dot(A[k,k+1:], v[k+1:])) / A[k,k];
return v

17 / 43

Solving with V-cycles gmgsolve.py

N = 2**9+1
x = np.linspace(0,1,N);
h = x[1]-x[0]

tridiagonal matrix
A = np.diag(2.*np.ones(N)) - np.diag(np.ones(N-1), 1) - np.diag(np.ones(N-1), -1)
A = A/h**2

f = np.ones(N, dtype=float) #rhs

udirect = la.solve(A, f) # correct solution

u = np.zeros(N) # initial guess
for iters in range(100):

r = f - np.dot(A,u)
if la.norm(r)/la.norm(f) < 1.e-10:
break

du = vcycle(A, r)
u += du

print "step %d, rel error=%e"% \
(iters+1, la.norm(u-udirect)/la.norm(udirect))

18 / 43

Solving with V-cycles gmgsolve.py

N = 2**9+1
x = np.linspace(0,1,N);
h = x[1]-x[0]

tridiagonal matrix
A = np.diag(2.*np.ones(N)) - np.diag(np.ones(N-1), 1) - np.diag(np.ones(N-1), -1)
A = A/h**2

f = np.ones(N, dtype=float) #rhs

udirect = la.solve(A, f) # correct solution

u = np.zeros(N) # initial guess
for iters in range(100):

r = f - np.dot(A,u)
if la.norm(r)/la.norm(f) < 1.e-10:
break

du = vcycle(A, r)
u += du

print "step %d, rel error=%e"% \
(iters+1, la.norm(u-udirect)/la.norm(udirect))

18 / 43

Solving with V-cycles gmgsolve.py

N = 2**9+1
x = np.linspace(0,1,N);
h = x[1]-x[0]

tridiagonal matrix
A = np.diag(2.*np.ones(N)) - np.diag(np.ones(N-1), 1) - np.diag(np.ones(N-1), -1)
A = A/h**2

f = np.ones(N, dtype=float) #rhs

udirect = la.solve(A, f) # correct solution

u = np.zeros(N) # initial guess
for iters in range(100):

r = f - np.dot(A,u)
if la.norm(r)/la.norm(f) < 1.e-10:
break

du = vcycle(A, r)
u += du

print "step %d, rel error=%e"% \
(iters+1, la.norm(u-udirect)/la.norm(udirect))

18 / 43

Solving with V-cycles gmgsolve.py

N = 2**9+1
x = np.linspace(0,1,N);
h = x[1]-x[0]

tridiagonal matrix
A = np.diag(2.*np.ones(N)) - np.diag(np.ones(N-1), 1) - np.diag(np.ones(N-1), -1)
A = A/h**2

f = np.ones(N, dtype=float) #rhs

udirect = la.solve(A, f) # correct solution

u = np.zeros(N) # initial guess
for iters in range(100):

r = f - np.dot(A,u)
if la.norm(r)/la.norm(f) < 1.e-10:
break

du = vcycle(A, r)
u += du

print "step %d, rel error=%e"% \
(iters+1, la.norm(u-udirect)/la.norm(udirect))

18 / 43

Iterations and problem size

Number of iterations is independent of problem size!

Grid size Number of iterations
33 20
65 21
129 22
257 22
513 22

1025 22
2049 22

19 / 43

Multigrid

Geometrical multigrid
Introduction
Details of GMG
Summary

Algebraic multigrid
Introduction
Grid coarsening and interpolation

20 / 43

What is needed for MG?

1. Sequence of grids
2. Intergrid transfer operators
3. Smoothing operator
4. Solver for coarsest grid

21 / 43

Multigrid

Geometrical multigrid
Introduction
Details of GMG
Summary

Algebraic multigrid
Introduction
Grid coarsening and interpolation

22 / 43

Multigrid

Geometrical multigrid
Introduction
Details of GMG
Summary

Algebraic multigrid
Introduction
Grid coarsening and interpolation

23 / 43

References

I Ruge, J. W., Stüben, K., “Algebraic Multigrid,” Chapt. 4 in
McCormick, S. G., Multigrid Methods, Frontiers in Applied
Mathematics, Vol. 4, SIAM, 1987.

I Briggs, W. L., Hensen, V. E., McCormick, S. F., A Multigrid
Tutorial, Second Edition, SIAM, 2000.

I Trottenberg, U., Oosterlee, C. W., Schüller, A., Multigrid,
Appendix A by Stüben, K., Academic Press, 2001.

24 / 43

What is a “grid”?

I Every matrix has an assoicated graph
1 1 0 0 1
1 1 1 0 0
0 1 1 0 1
0 0 0 1 0
1 0 1 0 1

 s
4
s

3

s2s
1 s

5

@
@
@
@
@
@

�
�
�

I Given a matrix, the finest grid is its associated graph.

25 / 43

Multigrid

Geometrical multigrid
Introduction
Details of GMG
Summary

Algebraic multigrid
Introduction
Grid coarsening and interpolation

26 / 43

What does “smooth” mean?

I In GMG, we have a notion of “smooth” error and notice that
Gauss-Seidel iteration makes rough errors smoother.

I Gauss-Seidel makes very rough errors smooth rapidly, then
stalls.

I In AMG, we define a “rough” error as one that Gauss-Seidel is
effective in reducing and a “smooth” error as one on which
Gauss-Seidel stalls.

I Loosely speaking, an error is “smooth” when Ae ≈ 0.
I aiiei ≈ −

∑
i 6=j aijej

27 / 43

What does “smooth” mean?

I In GMG, we have a notion of “smooth” error and notice that
Gauss-Seidel iteration makes rough errors smoother.

I Gauss-Seidel makes very rough errors smooth rapidly, then
stalls.

I In AMG, we define a “rough” error as one that Gauss-Seidel is
effective in reducing and a “smooth” error as one on which
Gauss-Seidel stalls.

I Loosely speaking, an error is “smooth” when Ae ≈ 0.
I aiiei ≈ −

∑
i 6=j aijej

27 / 43

Simplifying assumption

From now on, assume that the matrix A is a symmetric M-matrix.

1. Diagonal elements are positive, off-diagonal are 0 or negative
2. Diagonal > −(sum of off-diagonals)

I Original work on AMG was done for M-matrices.
I Some proofs are possible.

28 / 43

How to construct a coarse grid from a fine one.

I Define the notion of “strong dependence” (“influence”,
“coupling”).

I Break the mesh up into regions in which each point is strongly
dependent on a few distinguished points.

I The distinguished points will be the coarse mesh points.
I The coarse-to-fine mesh interpolation will be based on strong

dependence.

29 / 43

Strong dependence

Def. 1 Given a threshold 0 < θ ≤ 1, the variable ui “strongly
depends” on the variable uj if

−aij ≥ θmax
k 6=i
{−aik}

Def. 2 If the variable ui strongly depends on the variable uj ,
then the variable uj “strongly influences” ui .

30 / 43

Important feature of strong dependence

I Smooth error varies slowly in the direction of strong connection
I (See the discussion in Briggs, Henson, McCormick)

31 / 43

Coarsening

I Suppose you have a given fine grid
I Divide into C-points and F-points
I C-points will be next coarser grid

32 / 43

Coarsening

Requirements for C-points include
I Smooth error can be approximated accurately
I Smooth functions can be interpolated accurately
I Substantilly fewer points

33 / 43

Definitions

I Neighborhood Ni is the set of all points j with aij 6= 0
I Si is the set of all points that strongly influence i
I Ci is the set of C-points that strongly influence i

34 / 43

Coarsening heuristics

H-1 For each F-point i , every point j ∈ Si that strongly
influences i either should be in Ci or should strongly
depend on at least one point in Ci

H-1a (Aggressive coarsening) For each F-point i , every point
j ∈ Si that strongly influences i either should be in C or
should strongly depend on at least one point in C

H-2 The set of all coarse points C should be a maximal
subset of all points with the property that no C-point
strongly depends on another C-point.

35 / 43

Example

�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��

�
�
��

�
�
��

@
@

@@

@
@
@@

2

3

3

2

3 3 2

5 4 4

4 8 3

4 3 3

~
�
�
��

�
�
��

@
@

@@

@
@
@@

Mesh with strong couplings

36 / 43

Example

�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��

�
�
��

�
�
��

@
@

@@

@
@
@@

2

3

3

2

3 3 2

5 4 4

4 8 3

4 3 3

~
�
�
��

�
�
��

@
@

@@

@
@
@@

Values

36 / 43

Example

�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��
�
�� �
��

�
��

�
��
�
�� �
�� �
�� �
��

�
�
��

�
�
��

@
@

@@

@
@
@@

2

3

3

2

3 3 2

5 4 4

4 8 3

4 3 3

~
�
�
��

�
�
��

@
@

@@

@
@
@@

C and F points

36 / 43

Example

�
�� �
��
�
�� �
�� �
�� �
��
�
�� �
��

�
�� �
�� �
�� �
��

�
��

�
�� �
��

~
�
�
��

�
�
��

@
@

@@

@
@
@@

2

4

4

3

4 4 3

~

Increment remaining values

37 / 43

Example

�
�� �
��
�
�� �
�� �
�� �
��
�
�� �
��

�
�� �
�� �
�� �
��

�
��

�
�� �
��

~
�
�
��

�
�
��

@
@

@@

@
@
@@

2

4

4

3

4 4 3

~

Pick another C point

37 / 43

Example

�
�� �
���
�� �
��
�
�� �
�� �
�� �
��
�
�� �
��

�
�� �
�� �
�� �
��
�
�
��

@
@

@@

@
@
@@

~
�
�
��

�
�
��

@
@

@@

@
@
@@

4 4 3

~

3

Increment value

38 / 43

Example

�
�� �
��~ ~
�
�� �
�� �
�� �
��
�
�� �
��

�
�� �
�� �
�� �
��
~

�
�
��

�
�
��

@
@

@@

@
@
@@

~

Two more C points
Hypothesis 1 failures in red

Aggressive coarsining finishes here.

39 / 43

Example: final (standard) coarsening

�
�� �
��~ ~
~ �
�� ~ �
��
�
�� �
��

�
�� ~ �
�� �
��
~~

�
�
��

�
�
��

@
@

@@

@
@
@@

40 / 43

Aggressive Coarsening

I Results in a coarser mesh but slower convergence.
I Can be using on only some levels
I Requires a different interpolation formula, with longer-range

couplings

41 / 43

Interpolation from F to C

I Want

(PC×F e)i =

{
ei i ∈ C∑

j∈Ci
wijej i ∈ F

I Error is smooth on F =⇒ residual is small

aii ≈ −
∑
j∈Ni

aijej

I NS
i is strongly-coupled F points, NW

i is weakly

aii ≈ −
∑
j∈Si

aijej −
∑
j∈NS

i

aijej −
∑

j∈NW
i

aijej

I Put weakly-coupled F points into diagonal

(aii +
∑

j∈NW
i

aij)ei ≈ −
∑
j∈Si

aijej −
∑
j∈NS

i

aijej

42 / 43

Strongly-coupled F points get distributed

I Distribute NS
i points to all of Si . For j ∈ NS

i ,

ej ≈
∑

k∈Ci
ajk ek∑

k∈Ci
ajk

I Hence

wij = −
aij +

∑
m∈NS

i

(
aimamj∑
k∈Ci

amk

)
aii +

∑
n∈NW

i
ain

43 / 43

	Geometrical multigrid
	Introduction
	Details of GMG
	Summary

	Algebraic multigrid
	Introduction
	Grid coarsening and interpolation

