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Orienta(on*tuning*in*subcellular*domains*

Each*sub5domain*has*similar*orienta(on*tuning,*with*
quan(ta(ve*differences*
Does*this*suggest*that*they*are*responding*to*dis(nct*
neural*ac(vity?*
*



4Hz Animation: Raw Data, 256x256



Astrocyte: 256x256 
4Hz recording, raw data
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Some Biology

• Neurons

• Synapses

• Astrocytes

- receptors, channels, ER

- glutamate (neuro-transmitter)

- IP3



• Astrocytes have many functions

- provide nutrients to 
neurons

- regulate calcium flow

- play a role in various  
medical disorders (e.g. 
epilepsy)

- modulate synaptic strength 
of neurons

Astrocytes



Tripartite Configuration

Astrocyte Ca2+ signalling- an unexpected complexity_2014_volterra_opinion.pdf
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Endoplasmic Reticulum
(in most cells)

An organelle is a watertight 
cellular compartment that 
acts as a store of calcium 
(among other things), which 
helps regulate calcium in the 
cytosol



Increased Temporal Resolution, 28Hz

• Video at 2’26” 
Skype: 9’57, 11’51 - 12’11



Astrocyte: 256x256 
28Hz recording, raw data

Notice “spikes” in 
soma and processes

Origin of these 
“spikes” is non-
electrical.

Time scales or orders 
of magnitude longer 
than spikes in neuron 
traces. 



Some Questions
• Does the soma integrate inputs from all  processes and 

“spike” when the summed input reaches a threshold?

- does the soma exhibit less activity than processes?

- what is the origin and characteristics of the “spikes”?

- are all processes equivalent in influencing soma activity? 

- must processes spike to influence soma activity? 

• Do all processes influence each other’s activities or are 
they independently controlled by synaptic inputs?

•  Do larger events have a larger spatial influence than 
smaller events?



Postnov Model (2007)
• Phenomenological 

• Objective is to understand general 
characteristics, not quantitatively

• What kind of spiking can occur in the 
astrocyte, under what conditions

• Not modeling detailed biology

Biosystems. 2007 May-Jun;89(1-3):84-91. Epub 2006 Nov 12.
Functional modeling of neural-glial interaction.
Postno, Ryazanova, Sosnovtseva.



Postnov (2007)
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Fig. 1. Main pathways of glion activation (indicated with
empty-head arrows) and response (indicated with full-head
arrows). Two mechanisms of glion activation are presented:
(i) fast mechanism via glion depolarization due to rise of the
extracellular potassium concentration (thick solid line) and
(ii) slow mechanism associated with the IP3 production
(dotted line).

may be involved, increasing intercellular [K+] trig-
gers the removal of potassium by glions, etc. How-
ever, in the framework of our approach we take
into account four main causal chains. Namely, we
consider a fast and a slow mechanisms of glion ac-
tivation. The fast mechanism is represented by the
glion depolarization due to rise of the extracellular
potassium concentration. The slow mechanism is
associated with the IP3 production initiated by
synapse mediator diffusion. We also account for
the glial response both to the presynaptic neuron
(its synaptic terminal) and to the postsynaptic
neuron.

3. Model

Although our model is qualitative and dimen-
sionless, we will preserve the widely used notions
for the main parameters and variables. In this way,
v1 and v2 for the fast variables of the neuron model
will represent the transmembrane potentials, Iapp

plays the role of the applied current, etc. This will
allow us to discuss the model in terms of the pro-
cesses that we aim to simulate.

Presynaptic neuron. This neuron is de-
scribed by the well-known FitzHugh-Nagumo

model (FitzHugh, 1961):

ε1

dv1

dt
= v1 −

v3
1

3
− w1

dw1

dt
= v1 + I1 − Iapp, (1)

where v1 and w1 are the fast and the slow vari-
ables, ε1 = 0.04 is the time separation parameter,
I1 = 1.05 is the control parameter. For adjusting
the operating regime of the presynaptic neuron, an
excitatory current Iapp is added.

Synapse. In the framework of our approach, the
essential properties of synaptic coupling between
two neurons are the delayed response of the post-
synaptic neuron activity, and the threshold acti-
vation (sigmoid nonlinearity). Following Kopell et
al. (Kopell et al., 2000), we describe the synaptic
coupling with the first-order differential equation:

τs
dz

dt
= (1 + tanh(ss(v1 − hs)))(1 − z) −

z

ds
, (2)

Isyn = (ks − δGm)(z − z0). (3)

Here, z is a synaptic activation variable and τs de-
scribes the time delay. The parameters hs, ss, and
ds are responsible for activation and relaxation of
z. When v1 < hs, the synapse is inactive and z ≈
0. Increasing v1 makes ss(v1 − hs) positive and
switches the hyperbolic tangent function to posi-
tive values. As a result, z increases to z ≈ 1 with
the rate proportional to 1/τs. When v1 is reduced,
z inactivates back to zero. Once activated, z pro-
vides the postsynaptic current Isyn applied to the
second neuron. The factor ks plays the role of con-
ductivity while δGm reflects glion response. Ref-
erence level z0 is calculated from the assumption
that when the presynaptic neuron is silent then
z(t) = z0. This gives:

z0 = 2ds/(1 + 2ds + exp(2I1)). (4)

Postsynaptic neuron. The postsynaptic neu-
ron is also described by a FitzHugh-Nagumo
model:

ε2

dv2

dt
= v2 −

v3
2

3
− w2

dw2

dt
= w2 + I2 − Isyn − Iglion, (5)
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Fig. 1. Main pathways of glion activation (indicated with
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ductivity while δGm reflects glion response. Ref-
erence level z0 is calculated from the assumption
that when the presynaptic neuron is silent then
z(t) = z0. This gives:
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tive values. As a result, z increases to z ≈ 1 with
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z inactivates back to zero. Once activated, z pro-
vides the postsynaptic current Isyn applied to the
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ductivity while δGm reflects glion response. Ref-
erence level z0 is calculated from the assumption
that when the presynaptic neuron is silent then
z(t) = z0. This gives:
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model:
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Synapse Activation

with I2 = 1.02 and ε2 = 0.04. Instead of the
control parameter Iapp as used in the presynap-
tic neuron, both the synaptic current Isyn and the
glion-induced current Iglion are included in the
Eq.(5). The glion-induced current is proportional
to the glion mediator production Gm with a fac-
tor γ, Iglion = γGm. Thus, the parameters δ and
γ control the strength of the glion influence on the
synapse and the postsynaptic neuron, respectively.
In the glion, the processes to be modeled are the
slow IP3 production in response to synapse activ-
ity, [Ca2+] oscillations, and the production Gm of
glion mediator as controlled by the calcium con-
centration.

Calcium dynamics of glion. Since we use the
FitzHugh-Nagumo equations for the two neurons,
it is reasonably to adopt a simple and qualita-
tive model for the intra-glion calcium dynamics.
Hence, we apply the two-dimensional two-pool
model (Keener, and Sneyd, 1998) with additional
terms describing the external forcing:

τc
dc

dt
=−c − c4f(c, ce) + (r + αw2 + βSm), (6)

εcτc
dce

dt
= f(c, ce). (7)

Here, c denotes the Ca2+ concentration within the
glion, ce is the calcium concentration in the internal
store (endoplasmic reticulum ER), τc defines the
characteristic time for Ca2+ oscillations together
with time separation parameter εc. The value of
the parameter r = 0.31 controls the initial state
of the calcium oscillator without external influence
(α = 0 and β = 0). The term (r+αw2 +βSm) rep-
resents the calcium influx from the extracellular
space that is sensitive to the synapse mediator Sm

production (with the factor β) and to the glion de-
polarization by increasing extracellular potassium
(via αw2). The Ca2+ exchange between the cyto-
plasm and ER is described with a nonlinear func-
tion (Keener, and Sneyd, 1998):

f(c, ce) = c1

c2

1 + c2
− (

c2
e

1 + c2
e

)(
c4

c4
2 + c4

) − c3ce (8)

Mediator production. Finally, we take into
account the secondary mediator Sm (IP3) and
glion mediator Gm productions. Both processes

are characterized by the considerable delay. There
are threshold value for the Sm production that is
triggered by synaptic activity (z variable) and for
the Gm release that is governed by the rise of the
calcium concentration in the glion. At qualitative
level, we assume that the dynamics of Sm and Gm

are governed by similar equations:

τSm

dSm

dt
= (1 + tanh(sSm

(z − hSm
))) ×

× (1 − Sm) −
Sm

dSm

, (9)

εcτGm

dGm

dt
= (1 + tanh(sGm

(c − hGm
))) ×

× (1 − Gm) −
Gm

dGm

, (10)

where the specific values of the time scales, thresh-
old values, and steepnesses of the sigmoid func-
tions are determined by an appropriate choice of
the control parameters τSm

, τGm
, sSm

, sGm
, hSm

,
hGm

, dSm
, and dGm

. A set of control parameters
is shown in the Table:

c1 = 0.13, c2 = 0.9, c3 = 0.004,

c4 = 2.0/εc, c5 = 8.0, εc = 0.04,

τc = 8.0 τSm
= 100.0, τGm

= 5.0τs

ss = 1.0, sSm
= 100.0, sGm

= 100.0

hs = 0.0, hSm
= 0.45, hGm

= 0.5

ds = 3.0, dSm
= 3.0, dGm

= 3.0

The first 6 parameters (2 top rows) describing
the calcium dynamics are taken from Ref. (Keener,
and Sneyd, 1998) while remaining parameters were
selected to comply qualitatively with the known
relations between the processes under modeling.
In this way, the reference value for all time scales
is equal to 1.0. It is given by the second equation
for both neurons. Thus, one can adjust the synap-
tic delay by varying τs ∈ [0.5; 10.0]. According to
our assumptions the following relation between the
other time scales has to be maintained:

τSm
≫ τGm

≫ τs. (11)

Threshold parameters hs, hSm
, and hGm

are se-
lected to distinguish between inactivated and ac-
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Fig. 3. The fast activation pathway of glion leads to a
calcium resonator-type excitable dynamics. The top panel
represents the dynamics of the postsynaptic neuron. the
two bottom panels show temporal variations of calcium
concentration in the glion: (a) Subthreshold response at
α = 0.01 and (b) Single-spike response at α = 0.02. Note
the different scale for c variable in (a) and (b)

4.2. Patterns generated by slow activation pathway

Let us now block the fast activation pathway
by setting α = 0 but allow a synapse to activate
the glion via secondary mediator production with
varying β (Eqs. (2) and (9)). Because τSm

≫ τc,
the secondary mediator production is much slower
than the calcium oscillations. Thus, both the fac-
tor β and the duration of neuron firing play a role
in the activation of the glion. Let us first consider
the influence of β at the fixed firing interval of the
presynaptic neuron. The time course of v1 and the
response of the calcium oscillator with increasing
β are shown in Fig. 4. At β = 0.003 ( Fig. 4 (a)),
there are subthreshold calcium oscillations in the
glion. Their amplitude slowly increases during the
period of presynaptic neuron activity. When the
presynaptic neuron stops firing, the amplitude of
the subthreshold oscillations still increases to fi-
nally gradually decrease. The calcium oscillator
does not produce any spikes, and the glion remains
inactivated.

At higher β = 0.0033 ( Fig. 4 (b)), the ampli-
tude increases faster, and a single full-scale spike
is produced at the end of the firing course of the
presynaptic neuron. This resembles the excitatory
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(d)

Fig. 4. Slow pathway of glion activation. The presynaptic
neuron activity (top panel) evokes different glion responses
(a-d) at different rates of secondary messenger production
β.

dynamics shown in Fig. 3. However, the further
increase of β (Fig. 4 (c) and (d)) reveals another
mechanism. Spikes occur closer and closer to the
beginning of firing course implying faster activa-
tion of the glion.

Let us now set a smaller value of β = 0.002 but
increase considerably the duration of the presy-
naptic neuron firing T (Fig. 5). At T = 1000 (a),
a subthreshold response can be observed. This is
consistent with the previous figure. At T = 2000
(b), the calcium oscillator starts spiking at t ≈
1750 but stops immediately after the presynaptic
neuron stops its firing. With further increase of T
to 2000 (c), calcium spiking is maintained during
the neuron firing but it is terminated as soon as
the neuron becomes silent. The interpike intervals
seem to be approximately the same, and no pro-
nounced frequency variation is observed for small
β. Note, the glion inactivation time at the consid-
ered values of β is quite short: as soon as the neu-
ron stops firing, the calcium oscillator also stops
producing spikes.

What will happen at large β = 0.5 when ex-
ternal forcing of the calcium oscillator is strong?
It is clearly seen in Fig. 6 that the response of
the calcium oscillator is more complicated. At the
beginning of the neuron firing period, there is a
short burst of activity, then the calcium oscilla-
tions become blocked and the calcium concentra-
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Fig. 5. Depending on the duration T of presynaptic neu-
ron activity, the glion shows different responses of its cal-
cium dynamics: (a) At T = 1000, time interval is too short
to evoke full-scale oscillations in the glion, and only sub-
threshold oscillations are observed. At T = 2000 (b) and
T = 3000 (c), extended activity of the presynaptic neuron
evokes a self-sustained response. Note the different scale
for variable c in (a) and (b), (c).

tion c reaches some constant level higher than in
the inactivated state. When the stimulation is ter-
minated, calcium oscillations with increasing inter-
spike intervals are evoked. Finally, the calcium os-
cillator returns to its resting state. The last panel
shows the rapid increase of Sm, a plateau with con-
stant value, and finally a gradual fall. Obviously,
only intermediate values of Sm evoke calcium os-
cillations, and not the maximum values. The ob-
served behavior can again be explained in terms
of the dynamics of the calcium oscillator. Fig. 7
shows the bifurcation diagram for calcium subsys-
tem (Eq. (6) with α = 0, β = 0). There are two
Andronov-Hopf bifurcations at r1 and r2. Between
these points the system exhibits oscillations whose
amplitude decreases while the frequency increases
with increasing r. Thus, the transient dynamics
observed in Fig. 6 can be explained by a shift of
operating point: increasing term βSm corresponds
to large values of r and the calcium subsystem can
be driven out the oscillatory regime.
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Fig. 6. At large rate β of secondary messenger Sm produc-
tion, the calcium oscillations in the glion can be blocked.
The bottom panel shows that this is caused by the high
level of Sm.
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Fig. 7. One-parameter bifurcational diagram for calcium
oscillator (Eq. 6) indicates the limited range of oscillatory
behavior. During neuronal activity, the operating point can
be shifted along r from one equilibrium state to another.

4.3. Long-term potentiation

From the above results, we have learned how
the glion Ca2+ system can be activated by neu-
rons. Let us now consider the closed loop of neural-
glial activation and response to see how the glion
can control the activity of the postsynaptic neu-
ron. The control parameters are fixed at α = 0,
β = 0.05, ks = 0.2, τs = 10.0, and δ = 0 when
the fast activation pathway as well as the glion-
induced inactivation of the synapse are blocked.
The top panels in Fig. 8 show the glion activation
c and corresponding production of mediator Gm

that are almost twice as long as the duration of
the presynaptic neuron firing. The bottom three
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Fig. 3. The fast activation pathway of glion leads to a
calcium resonator-type excitable dynamics. The top panel
represents the dynamics of the postsynaptic neuron. the
two bottom panels show temporal variations of calcium
concentration in the glion: (a) Subthreshold response at
α = 0.01 and (b) Single-spike response at α = 0.02. Note
the different scale for c variable in (a) and (b)

4.2. Patterns generated by slow activation pathway

Let us now block the fast activation pathway
by setting α = 0 but allow a synapse to activate
the glion via secondary mediator production with
varying β (Eqs. (2) and (9)). Because τSm

≫ τc,
the secondary mediator production is much slower
than the calcium oscillations. Thus, both the fac-
tor β and the duration of neuron firing play a role
in the activation of the glion. Let us first consider
the influence of β at the fixed firing interval of the
presynaptic neuron. The time course of v1 and the
response of the calcium oscillator with increasing
β are shown in Fig. 4. At β = 0.003 ( Fig. 4 (a)),
there are subthreshold calcium oscillations in the
glion. Their amplitude slowly increases during the
period of presynaptic neuron activity. When the
presynaptic neuron stops firing, the amplitude of
the subthreshold oscillations still increases to fi-
nally gradually decrease. The calcium oscillator
does not produce any spikes, and the glion remains
inactivated.

At higher β = 0.0033 ( Fig. 4 (b)), the ampli-
tude increases faster, and a single full-scale spike
is produced at the end of the firing course of the
presynaptic neuron. This resembles the excitatory
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Fig. 4. Slow pathway of glion activation. The presynaptic
neuron activity (top panel) evokes different glion responses
(a-d) at different rates of secondary messenger production
β.

dynamics shown in Fig. 3. However, the further
increase of β (Fig. 4 (c) and (d)) reveals another
mechanism. Spikes occur closer and closer to the
beginning of firing course implying faster activa-
tion of the glion.

Let us now set a smaller value of β = 0.002 but
increase considerably the duration of the presy-
naptic neuron firing T (Fig. 5). At T = 1000 (a),
a subthreshold response can be observed. This is
consistent with the previous figure. At T = 2000
(b), the calcium oscillator starts spiking at t ≈
1750 but stops immediately after the presynaptic
neuron stops its firing. With further increase of T
to 2000 (c), calcium spiking is maintained during
the neuron firing but it is terminated as soon as
the neuron becomes silent. The interpike intervals
seem to be approximately the same, and no pro-
nounced frequency variation is observed for small
β. Note, the glion inactivation time at the consid-
ered values of β is quite short: as soon as the neu-
ron stops firing, the calcium oscillator also stops
producing spikes.

What will happen at large β = 0.5 when ex-
ternal forcing of the calcium oscillator is strong?
It is clearly seen in Fig. 6 that the response of
the calcium oscillator is more complicated. At the
beginning of the neuron firing period, there is a
short burst of activity, then the calcium oscilla-
tions become blocked and the calcium concentra-

6

Some Results for Calcium  
Postnov (2007)

Just shows the diversity of calcium spiking inside the Soma
Spiking is defined as width over spike-interval very very small



Single Point Astrocyte

CaER

Cytosol

Cacy

Variables
Ca: calcium in cytosol  
CaER: calcium in ER

Parameters
Secondary messager: IP3
Neurotransmitter: Glutamate

ER



Compartmental model

• Treat separately

- each process

- the soma

r: effect of neurons on astrocyte

dc: Diffusion coef. in Cytosol

der: Diffusion coef. in ER



Endoplasmic Reticulum 
of an Astrocyte

Singly connected entity? 
Multiply connected?



How Are The ER’s Connected?
ER

ER

ER

Cytosol

ER

Diffusion 
through cytosol

Diffusion 
through ER

Cytosol



Idea Behind Our Model

P1

P2
Neurons

Neurons

Soma
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Fig. 1: Astrocyte Diagram[25]

Fig. 2: Fast Calcium Dynamics. In the first row, the y-axis is calcium concentration with the di↵erent color curves
representing individual processes (Ca

pi) and the black curve representing the soma’s calcium concentration (Ca
s

). The x-axis
is time in ms. In the second row we have columns represening the individual processes and the soma with the intensity being
associated with calcium concentration. Moving down the column represents time. Here we set ↵ = .01,.05 and .1 and see that
the activity of the processes increases steadily and with an increase in those dynamics we see the emergence of spikes in the
soma (black line and first column) as ↵ increases
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Model Diagram
(N point model)

ER

Process

Astrocyte
Soma

dc
dER

dc

dc

dERN processes

Source: Evan Cresswell



Our Model Based On Postnov 
(neurons modeled through rAmp(t))
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Table 1: Model: Equation Set

Section Equations Description

Pre� Synaptic Neuron

✏1
dv

prei

dt
= v

prei �
v3
prei

3
� w

prei

w
prei

dt
= v

prei + I1 � I
app

FitzHugh�Nagumo Model

Synapse ⌧
s

dz

dt
= (1 + tanh(s

s

(v1 � h
s

)))(1� z)� z

d
s

activation variable

Post� Synaptic Neuron

✏2
dv

posti

dt
= v

posti �
v3
posti

3
� w

posti

dw
posti

dt
= v

posti + I2 � I
syn

� I
glion

FitzHugh�Nagumo Model

Astrocytic Ca

2+

⌧
p

dCa
pi

dt
= r + ↵w

posti + �Sm
i

� c4 ⇤ f(Ca
Pi , Ca

eri) + d
c

(Ca
s

� Ca
pi)� Ca

pi

✏
c

⌧
c

dCa
eri

dt
= f(Ca

pi , Ca
eri) + d

er

(Ca
ers � Ca

eri)

⌧
c

dCa
s

dt
= �Ca

s

� c4 ⇤ f(Ca
s

, Ca
e

) + (r +
nX

i=1

d
c

(Ca
pi � Ca

s

)

✏
c

⌧
c

dCa
ers

dt
= f(Ca

s

, Ca
ers) +

nX

i=1

d
er

(Ca
eri � Ca

ers)

fast/slow dynamics

Secondary Messenger

⌧
Sm

dS
mi

dt
= (1 + tanh(s

Sm

(z � h
Sm

)))(1� S
mi)�

S
mi

d
Sm

activation variable

Glutamate Messenger

⌧
Gm

dG
mi

dt
= (1 + tanh(s

Gm(Ca
pi � h

Gm)))(1�G
mi)�

G
mi

d
Gm

activation variable

The model can be reviewed in Table 1 along with its param-
eter set in Table 2. Some important dynamics are explained
below in an e↵ort to give intuition to the reader.

Neurons and Synapses.The post-synaptic neuron is influenced
by both synaptic current (I

syn

= (k
S

� �G
m

)(z � znot)) and
gliotransmission (I

glion

= �G
m

).

Astrocytic Calcium Dynamics.Ca
s

, Ca
pi , Ca

ers and Ca
eri

are the Ca2+ concentration within the astrocytic soma, pro-
cesses and its internal store (Endoplamic Recticulum) in the
soma and processes respectively (note that these terms will
be used interchangably). The astrocytic calcium levels are
a↵ected by the Endoplasmic Recticulum, the post-synaptic
neuron and the synapse. The ER poses as a nonlinear, bio-
physically relevant action in the astrocyte. The general cal-
cium dynamics including the soma’s interatction with the ER
are modeled using a modified dimensionless form of the model
[28],

f = [1]

The significant change that separates this model from the past
attempts at modeling the tripartite synapse is the compart-
mentalization of the astrocyte’s cytosol and ER. This allows
for a more spatial consideration of calcium dynamics while
retaining the analytical power of using ordinary di↵erential
equations. By dividing the cytosol we can consider local dy-
namics in individual processes, which are a↵ected directly by
synaptic activity as well as calcium dynamics in the astro-
cyte’s soma which is only e↵ected by calcium elevation in the
processes and interaction with the ER. Also, dividing the ER
allows us to e↵ectively investigate the heterogeneity of the ER.
Through this compartmentalization we are able to gain insght
into the signaling complexity of astrocytic calcium oscilations.

Secondary and Glio Messaging. S
m

is the secondary messen-
ger (IP3) which allows activity of the synapse (z) to indirectly
activate the astrocytes cytosolic calcium. G

m

is an activation
varible which is triggered by Ca2+ dynamics in the process
that causes an increase in synaptic input into the post-synptic
neuron.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

✏1
dv1
dt

= v1 �
v31
3

� w1 (41)

dw1

dt
= v1 + I1 � Iapp (42)

The model of the synapse is driven by its strength z according to

⌧s
dz

dt
= (1 + tanh(ss(v1 � hs)))(1� z)� z

ds
(43)

Isyn = (ks � �Gm)(z � z0) (44)

z is called the synaptic activation variable, and ⌧s is the time deilay.

... Describe hs, ss, ds.

z0 =
2ds

1 + 2ds + exp(2I1)

The postsynaptic neuron N2 is also described by the FizHugh-Nagumo model:

✏2
dv2
dt

= v2 �
v32
3

� w2 (45)

dw2

dt
= v2 + I2 � Isyn � IG2 + IATP (46)

where IG2 = �Gm and IATP = ⌘Ga, with I2 = 1.02 and ✏2 = 0.04. I1 = 1.02 and ✏1 = 0.04.

Astrocyte A. Use the Dupont and Goldbeter model with additional terms that describe the contribution
from activation pathways K and IP 3:

⌧c
dc

dt
= (r + ↵(w2 � w⇤

2) + �Sm)� c� c4f(c, ce)+Da⇠(t) (47)

✏c⌧c
dc3
dt

= f(c, ce) (48)

c is the Ca2+ concentration within the astrocyte, ce is the calcium concentration in the internal store (ER),
⌧c, together with the time separation ✏c define the characteristic time for Ca2+ oscillations and transients
(much longer than those for neurons). r + ↵(w2 � w⇤

2) + �Sm) represents the total calcium influx into the
cytoplasm.

f(c, ce) = c1
c2

1 + c2
�

✓
c2e

1 + c2e

◆✓
c4

c42 + c4

◆
� c3ce

Production of second mediator IP 3

This is the slow process of IP 3 production inside the glial cell:

⌧S
m

dSm

dt
= (1 + tanh(sS

m

(z � hS
m

)))(1� Sm)� Sm

dS
m

where the Sm variable qualitatively describes the changing concentration of IP 3.

Glial responses: G1, G2, ATP pathways

⌧G
m

dGm

dt
= (1 + tanh(sG

m

(c� hG
m

)))(1�Gm)
Gm

dG
m

(49)

⌧G
a

dGa

dt
= (1 + tanh(sG

a

(c� hG
a

)))(1�Ga)
Ga

dG
a

(50)
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Diffusion

Diffusion

Diffusion

rL + rAmp



Python (GUI) +
 C++ Simulation

(5 processes)



Calcium In The Process 
And The Soma

SomaProcess



Diffusion terms

Processes (colored)
Soma (black)

Processes (colored)
Soma (black)

Cytosol ER



Raster Plot
Record each spike
when the signal is 
above the threshold



Trigger Averages

Output from C++/Python Simulation Code
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Neuronal activity (r)

Spiking Frequency as a function of neural 
activity for different values of der (Diff ER)



1 process 2 processes 3 processes
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Neuronal input Neuronal input Neuronal input

Process 0 Process 0 Process 0

Soma Soma Soma
Fixed value of 
cytosol diffusion 
coefficient



Neuronal activity “r” Neuronal activity “r”

SomaProcess 0
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Trigger-Based AveragingTrial(1(
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Trigger-Based Averages 
Threshold Amplitude: 1.25 - 1.5
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Trigger-Based Averages 
Threshold Amplitude: 1.5 - 2.0
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STA bump



Trigger-Based Averages 
Threshold Amplitude: 2.5-6.0
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events(aligned(with(soma(events( spike(triggered(averages(Non-random process activity 
when the spike activatesSTA bump



Some Remarks
•  All processes exhibit “spikes”  

• Spikes are not all-or-none (amplitude varies)  

• Activity seems mixed: spikes + “subthreshold” events  

• Soma is less active than other processes – soma has 
fewer spikes, consistent with the need to receive 
enough inputs from processes to reach threshold  

• Processes are more active than the soma – 
consistent with them being “closer” than soma to 
synaptic inputs 



Questions To Ask With The Model

• Can we reproduce these results: processes are more active than 
soma; STAs of different ROIs are different, with bumps 
preceding or following soma spikes; activity is composed of 
events of various sizes; larger events are more likely to 
propagate further

• Do more active processes have STA bumps before soma spikes 
while less active processes have STA bumps following soma 
spikes? 

• More generally (ambitiously) can we generate/explain the various 
shapes of the STAs observed experimentally  



Random Square Pulse
• To introduce randomness for “r” (neuronal 

activity), we turn “neurons” on and off to 
mimic experimental conditions

• We chose a square pulse

• We present a simple algorithm to generate 
square pulses [0 to 1 to 0] with control of 
frequency, and the time spent at 0 and 1. 



Create a Square Pulse
• Control the period T, and the length of the top (Ttop) and 

bottom (Tbot)
= = = =

Tbot

one period: T

Ttop





Soma activity



Effect of one process on another

• When a process spikes, what is its origin? 

- the soma? 

- neuronal input? 

• We turn off process 0 to investigate



Effect Of One Process On Another

P1

P2
Neurons

Neurons

Soma



dCap0

dt
= rL + c4f() + Di↵usion0 � Cap0

dCapi

dt
= rL + rAmp � c4f() + Di↵usioni � Capi

……

Effect of one process on another



soma spike

P0 P1

Soma



soma spike

Som

P0 P1

What happens in the real astrocyte?

What are the 
mechanisms responsible
for spiking? 

How are they modeled? 

Can the model be predictive? 



Future Work
• Summarize our results

• Catalog and characterize spiking patterns as a 
function of randomness

- at this stage, multiple runs with randomness 
produce rather different results

- consider more complex models that take 
channel and IP3 production into account

- take neuronal input into account



Future work

P1

P2Neurons

Neurons

Soma

P1

P1
Neurons

Neurons

P2

P2

Neurons

Neurons

Neurons are in the 
vicinity of the 
processes



Fully Spatial Model
• Once we develop intuition with the models 

above, we can develop a fully spatial model

- ODEs become PDEs with standard 
diffusion terms:   

Dr2Ca



Thank you!

Questions? 


