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Abstract: My doctoral research can be broadly divided into two parts: 
 

a. On the Spatial and Temporal Order of Convergence of Hyperbolic PDEs: In this part, I discuss 

the leading order terms of the local truncation error of hyperbolic partial differential equations (PDEs). 

If one employs a stable numerical scheme and the global solution error is of the same order of accuracy 

as the global truncation error, one can make the following observations in the asymptotic regime, where 

the truncation error is dominated by the powers of grid-spacing and time step rather than their 

coefficients. Assuming that the spatial and temporal resolutions reach the asymptotic regime before the 

machine precision error dominates, 

 

i. the order of convergence of stable numerical solutions of hyperbolic PDEs at constant ratio of 

time step to grid-spacing is governed by the minimum of the orders of the spatial and temporal 

discretizations, and 

 

ii. convergence cannot even be guaranteed under only spatial or temporal refinement.  

 

I have tested the theory against numerical methods employing Method of Lines and not against ones 

that treat space and time together. Otherwise, the theory applies to any hyperbolic PDE, be it linear or 

non-linear, and employing finite difference, finite volume, or finite element discretization in space, and 

advanced in time with a predictor-corrector, multistep, or a deferred correction method. If the PDE is 

reduced to an ordinary differential equation (ODE) by specifying all spatial gradients to be zero, then 

the standard local truncation error of the ODE is recovered. I perform the analysis with generic and 

specific hyperbolic PDEs using the symbolic algebra package SymPy, and conduct a number of 

numerical experiments to demonstrate the theoretical findings. 

 

b. Time-Stepping Methods for Ocean Models: In the second part of my doctoral research, I study and 

address some complications associated with time-stepping the prognostic equations of an ocean model. 

The primary one is the disparate time scales problem, leading to a splitting of the fast depth-independent 

2D barotropic modes and the slow 3D baroclinic modes, and the application of a time-averaging filter 

over the barotropic modes to minimize aliasing and mode-splitting errors. To study the combined 

stabilizing effect of various filters and the forward-backward parameter, I develop a non-linear shallow 

water solver, simulate a surface gravity wave, and use the magnitude of the SSH error norm as an 

indicator of the right amount of dissipation. I redesign parts of the time-stepping algorithm of the Model 

for Prediction Across Scales — Ocean (MPAS-O) developed at the Los Alamos National Laboratory 

(LANL), to improve the barotropic-baroclinic splitting and enhance the coupling between the two 

modes. I incorporate a number of barotropic time-averaging filters in MPAS-O. I repeat the surface 

gravity wave test case with the non-rotating primitive equations of MPAS-O, and analyze the influence 

of the filters on the numerical solution. Finally, I design a verification suite of shallow water test cases 

for the barotropic solver of ocean models. I develop an unstructured-mesh ocean model in object-

oriented Python, employing the TRiSK-based spatial discretization of MPAS-O, and numerous time-

stepping methods, and use it as the platform to run the shallow water test cases. I conclude my doctoral 

research by conducting convergence studies for each test case keeping the time step proportional to cell 

width, and verifying that the convergence rates match the ones predicted by the theory in part (a). 


