
DATA SCIENCE BEFORE THE MACHINE LEARNING

BANDWAGON CAME TO TOWN

Max Gunzburger

Department of Scientific Computing

Florida State University

mgunzburger@fsu.edu

April 16, 2022

All models are wrong, but some models are useful
George Box

Assumption has many advantages

Chiefly these are the same as those of theft over honest toil
Bertrand Russel

Computational results are believed by no one,
except for the person who wrote the code

Experimental results are believed by everyone,
except for the person who ran the experiment

Origin unknown

You can fool all the people some of the time

and some of the people all the time,

but you cannot fool all the people all the time

Abraham Lincoln (not original)

• Are the lectures comprehensive? absolutely not

– the universe of data science is humongous,
the lectures barely scratch the surface

• Are the lectures superficial? often yes

– talking about even a single topic in
true depth would take several lectures

• Will the lectures give you the latest and
greatest versions of anything talked about? mostly no

– even the plain vanilla versions of any
topic can take a long time to present

• Will the subject of the lectures be
of interest or of use to you? probability is small

– because the universe of data science is
humongous it is unlikely that a particular
topic within the lectures will interest you

ergo, you may want to leave right now

• So what my goals for the short course?

– they are rather modest

• All I can hope for is to give you a small inkling about
the algorithmic breadth, depth, and usefulness of
data science (whatever that means) before and
even during the “machine learning” revolution

• By the way, everything I will talk about can be
viewed as “machine learning,” even if the topic
was developed 200 years ago

– back then and up to the 1950s, the “machines”
were humans

• In fact, in my opinion, two of the greatest, perhaps
the greatest, developments in data science are
interpolation and least-squares approximation

– I believe that today’s data scientist are going
to be very hard pressed to develop something new
that will have the huge impact these two humble
(200 to 250 year old) methods have had

• Finally, data science is not something new nor has
it been around for just few hundred years

– one has to only read about Newton’s, Kepler’s,
and even Archimedes’ contributions to what
we might today refer to being “data science”

• But, back to my goal

• Lots of breadth and depth on the wall

• But to do justice to the breadth and depth of the universe
of data science you would have to paper this wall

• My goal:

what I want to accomplish is

to give you a very small inkling of the breadth

and depth of what has been done in data science

before (and even concurrently with) what is being

issued from the “machine learning” bandwagon

– it is very much like

facing a huge buffet having hundreds of items

from which to choose from (even different classes

of items such as meat, cheese, fruit, vegetables,

cakes, ice creams, etc.)

but

you only get to taste a very tiny amount

of a very few items in the buffet

and hope that that

is enough for you to have some idea of what is

the breadth and depth of the items in the buffet

DATA SCIENCE ??????

Data ????

• Gathering step =⇒ many ways for creating data

– laboratory experiment measurements, field observations,
output of computational models,

– the creation of data is often preceded by constructing an input

- design of experiments: e.g., building mazes for experiments with rats

=⇒ data is created by measuring rat behavior

- writing a code: e.g., differential equations

=⇒ data is created by outputs of the code

– data is often corrupted or uncertain or both

– data can come in different forms

- tabular, functional, known probability distribution,

• What can one do with gathered data?

– mine

– compress

– optimize

– generate new data

• Sometime during the lectures all of these will enter into the picture

as will the how to gather data “intelligently”

• Let’s take a look at the possibilities for just tabular data

similar discussions can be made about data in other forms

Tabular data

• Indexed tabular data

person age gender smoker address bmi* · · · · · ·
1
2
3
4
·
·
·

1,000,000

⇑ ⇑ ⇑ ⇑ ⇑ ⇑
data type ⇒ integer integer yes/no text decimal · · · · · ·

* body mass index

– mining columns

person age gender smoker address bmi · · · · · ·
1
2
3
4
·
·
·

1,000,000
⇓ ⇓

single column average %
mining age smokers

⇓ ⇓
multiple column correlation between

mining age and smoking

• Discrete spatial/temporal data

location time temperature rainfall humidity

x1 t1
x1 t2
... ...
x1 tMgather

x2 t1
x2 t2
... ...
x2 tMgather
... ...
... ...

xMspace t1
xMspace t2

... ...
xMspace tMgather

– determining data at a time different from any time used to gathered data

GATHERED

location time temperature rainfall humidity

x1 t1
x1 t2
...

...
x1 tMgather
...

...

xMspace t1
xMspace t2

...
...

xMspace tMgather

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

TEMPORAL PREDICTION (tprediction > tMgather)

location time temperature rainfall humidity

x1 tprediction
x1 tprediction
...

...
x1 tprediction
...

...

xMspace tprediction
xMspace tprediction

...
...

xMspace tprediction

– determining data at a point different from any point used to gather data

GATHERED

location temperature rainfall humidity

x1
x2
...

xMspace

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

SPATIAL PREDICTION

location temperature rainfall humidity

xin
xout

{xin,xout}({x1, . . . ,xMspace}
xin surrounded by {x1, . . . ,xMspace}

e.g., xin ∈ convex hull of {x1, . . . ,xMspace}
xout isolated from {x1, . . . ,xMspace}

e.g., xout 6∈ convex hull of {x1, . . . ,xMspace}

– not surprising, usually xin is “better” than xout

– finding optimal data

GATHERED

location temperature

x1 T1
x2 T2
...

...
xMspace TM

⇓ ⇓ ⇓ ⇓

OPTIMAL DATA

location temperature

xmax ⇐ Tmax
xmin ⇐ Tmin

e.g., find xmax ∈ {x1, . . . ,xMspace} at which the temperature is heighest

– constructing functions from data

GATHERED

location temperature

x1 T1
x2 T2
...

...
xM TM

⇓ ⇓ ⇓ ⇓

given =⇒


(x1 , T1)

(x2 , T2)
...

(xM , TM)

 =⇒ construct =⇒ fT (x)

– of course, fT (x) = fT (x;T1, . . . ,TM), i.e., depends on the data for T

– two classical ways to construct fT (x)

- interpolation =⇒ fT (xm) = Tm for j = 1, . . . ,M
- least squares approximation =⇒ fT (xm) 6= Tm for j = 1, . . . ,M

– what can you do with fT (x)?

- you can evaluate it at any x to obtain the temperature at points not in the input data set

- if obtaining the Tm’s is expensive and one needs to obtain the temperature Tnew at a new

point xnew, one can simply use (the appoximation) fT (xnew) at practically no cost

– add data to improve “results”

GATHERED

location temperature

x1 T1
x2 T2
...

...
xM TM

– suppose we are not happy with these data so that we want to supplement them

with a datum gathered at a new point xM+1 (or several new points)

NEW GATHERED

location temperature

x1 T1
x2 T2
...

...
xM TM
xM+1 TM+1

– ideally, we would like to choose the new point xM+1 so that we are now as happy as possible

– methods for doing so have been devised, but we can only be approximately happy

The curse of dimensionality (coined by Richard Bellman)

• Let’s consider the humble example of the approximation of a function f (α,β)
that depends on p = 2 parameters {α,β} by a polynomial having the form

fapprox1(α,β) = ∑
i, j=0,1,2, i+ j≤2

ai jα
i
β

j

= a00+a10α +a10β +a20α
2+a11αβ +a02β

2 ≈ f (α,β)

=⇒ sum of exponents in α and β is less than or equal to n = 2

– to determine the six coefficient {ai j}i, j=0,1,2, i+ j≤2

we evaluate f (α,β) at 6 points {αk,βk}6
k=1 and require that

fapprox1(αk,βk) = ∑
i, j=0,1,2, i+ j≤2

ai jα
i
kβ

j
k

=a00+a10αk +a10βk +a20α
2
k +a11αkβk +a02β

2
k = f (αk,βk)

– these are six equations in six unknowns so that (if the points {αk,βk}6
k=1 are

distinct) we can find a unique set of six coefficients {ai j}i, j=0,1,2, i+ j≤2

– why would we want to do this

after all we know the function f (α,β) so

that we can evaluate it at any point (α,β)

– but suppose that

evaluating f (α,β) at a point is a very expensive task

and

we want to evaluate f (α,β) at lots of points

– so, instead of evaluating f (α,β) at all those points we evaluate fapprox1(α,β)

– evaluating fapprox1(α,β) at a point is a very inexpensive task

– so, at the cost of only 6 expensive evaluations of f (α,β)

we can find lots of values of the approximation

fapprox1(α,β) at very little cost

• Let’s also consider another humble example in which we approximate the
function f (α,β) of p = 2 parameters by a polynomial now having the form

fapprox2(α,β) = ∑
i, j=0,1,2

ai jα
i
β

j

= a00+a10α +a10β +a20α
2+a11αβ +a02β

2

+a21α
2
β +a22α

2
β

2+a12αβ
2 ≈ f (α,β)

=⇒ the exponent of each in α and β is less than or equal to n = 2

– we now have 9 coefficients to determine so we need
to evaluate f (α,β) at 9 points

– by the way, there are good practical reason why one would use
fapprox2(α,β) and not fapprox1(α,β), even though the latter
requires fewer expensive function evaluations

• What happens if we increase p and n?

– specifically, how many expensive evaluations of f (~α) (where~α =(α1,α2, . . . ,αp))

do we have to do for larger p and n?

p = d = number of
number of maximal degree evaluations of f (~α)
parameters of polynomials needed to constuct

fapprox1(~α) fapprox2(~α)

3 3 20 64
5 56 216

5 3 56 1,024
5 252 7,776

10 3 286 1,048,576
5 3,003 60,046,176

20 3 1,771 > 1×1012

5 53,130 > 3×1015

100 3 176,851 > 1×1060

5 96,560,646 > 6×1077

⇑ ⇑
(d + p)!

d!p!
(d +1)p

=⇒ number of atoms in the universe ≈ 1078

• For these examples, the curse of dimensionality =

the explosive growth as p and/or n increase

in the cost of constructing a polynomial approximation

of a function that depends on

p parameters and on the degree n of the polynomial

– the curse appears in similar guises in many other settings

ELEMENTARY TOOLS

Very elementary linear algebra

• I assume that everyone knows what a vector and a matrix are,
what are their transposes, what the identity matrix is, and
other extremely elementary things about vectors and matrices

• Linear independence and rank of a matrix

– a linear combination of a set of {z1, z2, · · · , zM} is defined as

c1z1+ c2z2+ · · ·+ cmzM

where {c1, c2, · · · cM} is a set of constants

– a set of vectors {z1, z2, · · · , zM} is linearly independent if

none of the vectors in the set

can be written as a linear combination of the other vectors

– viewing the columns (or rows) of a matrix A as vectors, the rank of a matrix

is the maximum number of linearly independent

columns (or equivalently rows) of the matrix

- e.g., if A= (z1 z2 · · · zM) where zm denotes a column of A
the rank of A is the maximum number of columns that can

be written as a linear combination of the other columns

- row rank of a matrix = column rank of a matrix

– a matrix A is said to have full column rank if the columns of
the matrix are linearly independent

- an N×M matrix A can have full column rank only if M ≤ N
i.e., if M > N, it is impossible for the matrix

to have independent columns

– analogously, one an define full row rank

– clearly, only square matrices can have both full and column row ranks

• Symmetric and skew-symmetric matrices

– symmetric matrix AT = A

- if ai j denote the entries of A, then a ji = ai j

– skew-symmetric matrix AT =−A

- if ai j denote the entries of A, then a ji =−ai j

the diagonal entries aii = 0

• Orthogonal (or orthonormal) matrices

– square matrices U such that UUT = UTU= I
where UT denotes the transpose of U
and I denotes the identity matrix

– U−1 = U

– if u j and u j′ denote two columns of U, then uT
j′u j = δ j j′

and likewise for the rows

• Eigenvalues and eigenvectors of matrices

– given a square matrix A, then any pair λ and u that satisfy

Az = λz

are referred to as an eigenvalue and eigenvector of A, respectively

– if A is a symmetric matrix, i.e, AT = A, then
the eigenvalues and eigenvectors of A are real

– if A a is positive definite matrix

i.e. zTAz > 0 for all vectors z 6= 0
then all the eigenvalues are positive

- if zTAz ≥ 0, then A is said to be positive semi-definite

and can possibly have a null vector

i.e., it can possibly have a vector z such that

Az = 0, where 0 denotes the vector of all zeros

• Singular value decomposition

– for any N×M matrix A, there exist an

N×N orthonormal matrix U
and an

M×M orthonormal matrix V
such that

A= UΣVT

where

the N×M matrix Σ is a rectangular diagonal matrix

in which the diagonal entries are non-negative

and appear in a non-increasing order

- the columns of U are referred as the left-singular vectors of A

- the columns of V are referred as the right-singular vectors of A

- the diagonal entries σi of Σ are referred as the

singular values of the matrix A
the number of positive singular values = rank of A

– we have that for any matrix A

ATA= VΣ
TUTUΣVT = VΣ

T
ΣVT =⇒ ATAV= VΣ

T
Σ

so that the columns V are the eigenvectors of ATA and the
diagonal entries σ 2

i of ΣT Σ are the eigenvalues of ATA

- likewise

AAT = UΣ
TVTVΣUT = UΣΣ

TV =⇒ AATU= UΣΣ
T

so that the columns U are the eigenvectors of AAT and the

diagonal entries σ 2
i of ΣΣT are the eigenvalues of AAT

- note that AAT and AA have the same nonzero eigenvalues

which are the squares of the nonzero singular values of A

- note also that, in general, AA and AAT

are positive semi-definite matrices

Very elementary probability and statistics

• Given a random variable y, a

probability density function (PDF) ρ(y)

defined on an interval [a,b] satisfies the following properties

ρ(y)≥ 0 for all y ∈ [a,b] and
∫ b

a
ρ(y)dy = 1

– one may have a =−∞ and/or b =+∞

– PDFs may also be defined on a finite set of points, i.e., given the point set
S = {ak}K

k=1, we have that ρ(yk) defined over S is a function such that

ρ(yk)≥ 0 for all yk ∈ S and
K

∑
k=1

ρ(yk) = 1

• Given a random variable y and a PDF ρ(y)
a cumulative density function (CDF) F(y) is defined for y ∈ [a,b] as

F(y) =
∫ y

a
ρ(y′)dy′

– clearly

F(a) = 0 F(b) = 1

0≤ F(y)≤ 1 for y ∈ (a,b) F(y′)≥ F(y) whenever y′ > y

– for any a≤ â≤ b̂≤ b,

Prob(y≤ â) = { probability that y≤ â}= F(â)

Prob(y ∈ (â, b̂)) = { probability that y ∈ (â , b̂)}= F(b̂)−F(â)

– if ρ(y) is continuous, then for any â ∈ (a,b)

Prob(y = â) = { probability that y = â}= 0

– F(y) is continuos and ρ(y) =
dF
dy

if the derivative exists

• Given two random variables y and z equipped
with PDFs ρy(y) and ρ(z), respectively

the conditional probability of an event1 z
is the probability that that event will occur

knowing that the event y has already occurred

conditional probability= ρ(z|y) = ρ(y∩ z)
ρ(y)

=
probability that both events y and z will happen

probability that the event y already happened

– if y and z are independent, then ρ(z|y) = ρ(z)

– for three events y, z, and w, the probability of all three happening is

ρ(w∩ y∩ z) = ρ(y)ρ(y|z)ρ(w|(z∩ y))

1An event z is a draw from the PDF ρ(y)

• Then there is the Bayes formula

ρ(z|y) = probability of z given that y is known =
ρ(y|z)ρ(z)

ρ(y)

=

(
probability of z given that y is known

)(
probability of z

)
probability of y

– Bayes formula is put to good use

e.g., given data y, it can be used to determine the probability of z

• The expected value or mean of y is defined as

E
(
y
)
=
∫ b

a
yρ(y)dy

– if E
(
y
)
= 0, we say that y has zero mean

or we say that the PDF ρ(y) is centered

• The m-th moment of y is defined as

Mm
(
y
)
= E(ym) =

∫ b

a
ym

ρ(y)dy

• The variance of y is defined as

V(y) = E
(
(y−E(y)(y−E(y)

)
=
∫ b

a

(
y−E(y)

)2
ρ(y)dy

– it is easily verified that

V(y) = E(y2)−
(

E(y)
)2

=
∫ b

a
y2

ρ(y)dy−
(∫ b

a
(yρ(y)dy

)2

– clearly, if y has zero mean, we have V(y)= E(y2)=M2(y)=
∫ b

a
y2

ρ(y)dy

• The standard deviation of y is defined as

σ(y) =
√

V(y)

– a small standard deviation indicates that the PDF
is clustered closely around the mean

– a large standard deviation indicates that the PDF
has appreciable values far away from the mean

• The covariance is defined as*

Cov(y,y′) = E
(
(y−E(y)(y′−E(y′)

)
= E(yy′)−E(y)E(y′)

– obviously V(y) = Cov(y,y)

– the covariance is

symmetric Cov(y,y′) = Cov(y′,y)
nonnegative Cov(y,y′)≥ 0

• The correlation is defined as

K(y,y′) =
Cov(y,y′)
σ(y)σ(y′)

– obviously K(y,y) = 1

– in general, K(y,y′)≤ 1 for all y,y′

• If K(y,y′) = 0, we say that y and y′ are uncorrelated

* Here, y and y′ are drawn from the same PDF

• Now, suppose we have N random variables {yn}N
n=1

defined over an N-dimensional set Γ

– a joint probability density function (PDF) ρ(y1, . . . ,yN) is a mapping from
Γ into the real numbers such that

ρ(y1, . . . ,yN)≥ 0 for all {y1, . . . ,yN} ∈ Γ

and ∫
Γ

ρ(y1, . . . ,yN)dy1 · · ·dyN = 1

• For n = 1, . . . ,N, the mean or expected value of yn is given by

µn = E(yn) =
∫

Γ

ynρ(y1, . . . ,yN) dy1 · · ·dyN

– if µn = 0, then yn is called centered

• The covariance of {yn}N
n=1 is the N×N matrix C given by*

Cnn′ = E
(
(yn−µn)(yn′−µn′)

)
=
∫

Γ

(yn−µn)(yn′−µn′)ρ(y1, . . . ,yN) dy1 · · ·dyN

= E(ynyn′)−E(yn)E(yn′) = E(ynyn′)−µnµn′

– if either yn or yn′ is centered Cnn′ = E(ynyn′)

* Here, y and y′ are drawn from different PDFs

• The random variables {yn}N
n=1 are independent if the choice of values of any

subset of variables does not depend on the choices made for the values of the
remaining variables

– the random variables {yn}N
n=1 are independent if and only if the joint PDF

is a product of the PDFs for the individual variables

ρ(y1, . . . ,yN) =
N

∏
n=1

ρn(yn)

where, for each n = 1, . . . ,N, ρn(·) is a mapping from an interval Γn to the
real numbers that satisfies

ρn(yn)≥ 0
∫

Γn

ρn(yn)dyn = 1

– note that then Γ is the hyper-rectangle Γ = Γ1⊗Γ2⊗·· ·⊗ΓN

– note that the intervals Γn maybe of finite (e.g., for a uniform distribution)
or infinite (e.g., for a Gaussian distribution) extent

• The random variables {yn}N
n=1 are uncorrelated only if

Cnn′ = σ
2
n δnn′ =

{
σ

2
n if n = n′

0 if n 6= n′
∀n,n′ = 1, . . . ,N

where σ 2
n denotes the variance of yn

σ
2
n = Cnn = E

(
(yn−µn)

2
)

=
∫

Γ

(yn−µn)
2
ρ(y1, . . . ,yN) dy1 · · ·dyN

= E(y2
n)−µ

2
n

– if yn is centered σ 2
n = Cnn = E(y2

n)

• Independence implies uncorrelated

– if n 6= n′, then

Cnn′ =
∫

Γ

(yn−µn)(yn′−µn′)ρ(y1, . . . ,yN) dy1 · · ·dyN

=
∫

Γ1⊗Γ2⊗···⊗ΓN

(yn−µn)(yn′−µn′)
N

∏
n=1

ρn(yn) dy1 · · ·dyN

=
∫

Γn

(yn−µn)ρn(yn)dyn

∫
Γn′
(yn′−µn′)ρn′(yn′)dyn′

×
N

∏
n′′=1,n′′ 6=n,n′′ 6=n′

∫
Γn′′

ρn′′(yn′′)dyn′′

=
∫

Γn

(yn−µn)ρn(yn)dyn

∫
Γn′
(yn′−µn′)ρn′(yn′)dyn′

= E(yn−µn)E(yn′−µn′) = 0

• However, uncorrelated does not necessarily imply independence

– let y1 be uniformly distributed on [−1,1]

=⇒ E(y1) = 0 E(y3
1) = 0

– let y2 =
3
2y2

1

– clearly, {y1,y2} is not independent

– however, {y1,y2} is uncorrelated

C12 = E(y1y2)−E(y1)E(y2) =
3
2E(y3

1) = 0

• When does uncorrelated imply independence?

– if and only if the variables follow a multivariate Gaussian distribution

SAMPLING IN HYPERCUBES

• A fundamental (perhaps the fundamental) data science task
is to obtain samples of some entity at several “locations”

here the nomenclature “locations”

is used in a very generalized sense

– the locations could be points in space and/or instants of time

- e.g., sampling the temperature at 9:00 AM every day

at fixed physical locations in Antarctica

– the “locations” could be pixels in a digital image

- e.g., sampling the color and intensity at pixels in an image

– the “locations” could be people

- e.g., sampling the age of a population segment

•
•
•

• Where are “locations” located?

– in some settings one does not have a choice of “locations”

- e.g., if someone wants to sample the water

quality at ponds and lakes in their state

– in other settings, one is free to choose, among many choices,
a predetermined set of “locations” that suits an objective

- e.g., choosing quadrature points to meet an accuracy objective

for approximating the integral of a function

– in still other settings, one wants to sample at an optimal set
of “locations” which are not predetermined in any way

- e.g., in an petroleum field, find a few locations

which are optimal for extraction purposes

– then there is the case of an infinite number of “locations”

-e.g., we are not dealing with discrete set of points, but with

regions which contain a infinite number of points

• All these settings are worth exploring and all of them
have a huge body of work devoted to them

– we touch on all of these sampling settings during the lectures

– however, due to time limitations,

we only explore two of them in some detail

– the first is point sampling in hyper-rectangles

Point sampling basics

• Point sampling in regions in Rd is useful in lots of settings

- mesh generation

- meshless computing methods

- particle methods

- parametric studies

- response surface analyses

- statistical analyses

- process optimization

- multi-dimensional integration

- · · · · · · · · ·
• Point sampling is the central task in the design of experiments of either the

laboratory or computational types; it answers the question

– how does one choose the parameters that are used in an experiment?

• All combinations of the dimensionality and cardinality of point sets are of
interest, depending on the application

- large number of points in high dimensions

- large number of points in low dimensions

- small number of points in high dimensions

- small number of points in low dimensions

- · · · · · · · · · and everything in between

• All types of point distributions are of interest as well, again depending on the
application

- uniformly distributed points in simple regions (e.g., hypercubes)

- general regions

- nonuniformly distributed points

- anisotropically distributed points

- · · · · · · · · · and combinations thereof

• Cautionary note 1

– sampling methods that are known to be good for a large number
of sampling points may not be so good for sparse sampling

– likewise, theorems that hold “as the number of sampling points
goes to ∞” are often useless in practice

– unfortunately, most sampling methods and the accompanying theorems
have been developed for the case of a large number of sampling points

• Cautionary note 2

– there is a fundamental difference between the design of laboratory
and computational experiments

- computer experiments are repeatable

- due to noise, laboratory experiments are not exactly repeatable

• Effect of sampling strategy in the design of a

laboratory experiment having one free parameter

Experimental data point with error bar

Line determined from experimental data

Possible position of exact line

Left: points sampled near center of sampling interval

Right: points sampled near the end of the sampling interval

• One should take advantage of any information known about the parameters

– if the parameters are constrained, one should sample in the feasible region

– if there is a known bias towards a certain sub-range of parameter values,
one should sample nonuniformly

– if there are known correlations between the parameters, one should sample
anisotropically

• If one knows nothing, then one should just sample uniformly in a hypercube

– even this requires some rough knowledge about upper and lower bounds
on the possible parameter values

– because, more often than not, that is what one will end up doing for the
design of computational experiments

POINT SAMPLING IN HYPER-RECTANGLES

• One is tempted to believe that sampling within a simple
domain such as a hyper-rectangle is rather uninteresting

– however, this is far from the truth

– in fact, there are lots of applications for which
sampling in a hyper-rectangle is needed

- uncertainty quantification, optimization,
control, image processing,

– in fact, designing, analyzing, and applying strategies
for sampling in hyper-rectangles is a huge industry

- so much so that there have been many algorithms devised
specifically for sampling in hyper-rectangles that cannot
be used for sampling in more general domains

• A hyper-rectangle Γ is simply a high-dimensional box

– canonical bounded hyper-rectangles include

1× 1× · · · × 1 hypercubes having a vertex at the origin

2× 2× · · · × 2 hypercubes having their center at the origin

– hyper-rectangles of interest include those having one, or
some, edges that have semi-infinite or infinite lengths

- a rectangle with one side [0, 1] and the other a semi-infinite side [0,∞]

- a rectangle with one side [0, 1] and the other an infinite side [−∞,∞]

– so an N -dimensional hyper-rectangle is defined
in terms of its one-dimensional edges as

[a1, b1]× [a2, b2]× · · · × [aN , bN]

where −∞ ≤ an < bn ≤ ∞ for n = 1, . . . , N

Monte Carlo (MC) sampling

• By far, the most used sampling scheme is Monte Carlo sampling

– sample points are chosen randomly

– sampling can be done sequentially

- given a Monte Carlo set of samples, one can add another sample

point without having to move any point in the given set

– sampling can be effected on general domains, not just hyper-rectangles

- but for now we stick to hyper-rectangles

• If each component yn of the vector y can be chosen
independently from the other coordinates

i.e., if we have the joint PDF ρ(y) = ρn(y1)ρ2(y2) · · · ρN(yN)

then

each component yn of y can be independently

sampled using its own PDF ρn(yn)

– specifically

- randomly select, for each n, a point yn ∈ [an, bn]

according to the PDF ρn(yn)

- then, the sample point in the hyper-rectangle

is simply y = (y1, y2, · · · yn)

• If the hyper-rectangle is bounded

– then the most commonly used strategy is to sample uniformly

– of course, one cannot sample uniformly if an edge is infinite
(an = −∞, bn =∞) or semi-infinite (e.g., an = 0, bn =∞)

• The more general case has a joint PDF ρ(y) that is not separable

– e.g., the general multivariate Gaussian PDF is not separable

1√
2πN |Σ|

e
1
2(y−E(y))TΣ−1(y−E(y))

Σ ⇐ N ×N symmetric, positive definite matrix

of correlations between yn and yn′

|Σ| ⇐ determinant of Σ

E(·) ⇐ expected (or mean) value

– if the components of y are uncorrelated
then Σ is a diagonal matrix with diagonal entries σ2

n, n = 1, . . . , N

1√
(2π)N ΠN

n=1σn
e
|y−E(y)|2

2σ2 =
(

1√
2π σ1

e
(y1−E(y1))2

2σ2
1

)(
1√

2π σ2
e

(y1−E(y2))2

2σ2
2

)
· · ·

(
1√

2π σn
e

(yN−E(yn))2

2σ2
3

)
σ2
n ⇐ variance of yn

- indeed, this PDF is the product of N one-dimensional Gaussian PDFs

- this is a very special PDF

• How does one sample non-uniformly?

– sets of points distributed according to a joint PDF ρ(y) can be sampled
from uniformly distributed point sets by an appropriate mapping

- in fact, this holds for any sampling method

- constructing the needed mapping may not

always be a simple matter

– alternately, for non-uniform Monte Carlo sampling

- the sampling itself can incorporate the PDF ρ(y)

- one means for doing so is to use a rejection method

– one such rejection method proceeds as follows

given a joint PDF ρ(y) defined for y ∈ Γ

- set ρmax = max
y∈Γ

ρ(y)

- then sample a point y ∈ Γ according to the uniform PDF

- also sample a point ŷ ∈ [0, 1] according

to the one-dimensional uniform PDF

- if ŷ <
ρ(y)

ρmax
, then y is accepted as

one of the desired sample points

- otherwise, it is rejected

- one continues the process until one obtains

the desired number of sample points

Quasi-Monte Carlo (QMC) sequences

• The descriptor “sequences” refers to the fact that the QMC points are sampled
one at a time so that an M -point set retains all the points of the M − 1
point set

- in this regard, QMC and MC sampling are alike

– but, unlike MC, the QMC samples are (usually) deterministically defined

– also unlike MC, QMC sampling can not be effected for general domains

• Many QMC sequences have been defined, including the

Faure, Halton, Niederreiter, and Sobol sequences

just to name a few

– we look at a few such sampling approaches
for uniform sampling in a unit hypercube

– there is a huge literature about QMC sequences

• As an example, consider Halton sequences which are determined
according to the following procedure

– given a prime number p

any positive integer q can be uniquely represented

as q =
∑

i qip
i for some integers qi

– define the mapping Hp(q) =
∑

i qi/p
i+1

we then have that Hp(q) ∈ [0, 1]

– then, the Halton sequence of M points in N dimensions is given by{
Hp1(q), Hp2(q), . . . , HpN (q)

}M
m=1

where {pn}Nn=1 is a set of N prime numbers

• Hammersley sampling is technically not a QMC method because

the sample points are not determined sequentially

– however, Hammersley sampling is also

deterministic

and

relies on Halton sequences

so that it often lumped together with true QMC sequences

– Hammersley sampling in the unit hypercube in RN proceeds as follows

- the first coordinate of the sample points is determined

by a uniform partition of the unit interval

- the remaining coordinates are determined from an

(N − 1)-dimensional Halton sequence

Latin hypercube sampling (LHS)

• Many variations of LHS sampling have been developed

- here we describe the basic technique

• A set of LHS sampling of M points in the unit hypercube in RN are
determined randomly and non-sequentially by the following process

– first, the unit cube is divided into MN congruent cubical bins

i.e., into M bins in each of the N coordinate directions

– then, M of the cubical bins are chosen according to N random
permutations of {1, 2, . . . ,M}

– finally

a random point is sampled within each of the M cubical bins so chosen

or alternately

the points are simply chosen to be the center points of those bins

• The example LHS sample set given in the figure corresponds to
N = 2, M = 4, and the permutations {3, 2, 4, 1} and {4, 2, 1, 3}

– note that, by construction

- in each row of bins, there is only one sample point

- in each column of bins, there is only one sample point

– this is the general feature of Latin hypercube samples

Illustrations of five “uniform” 100 point sets in a square

.

.

.

.

.

.

.

.

.

.

Cartesian Monte Carlo

Halton Hammersley Latin hypercube

• Certainly, the tensor-product Cartesian set is
the most “uniform”, but of course

- the number of points M is restricted to be an
xxxxx integer power of the parameter dimension N

- furthermore, for more than one reason, Cartesian
xxxxx sampling turns out to be a very bad choice
xxxxx of sample points for some important settings

• For the other four cases

- the sample points are certainly not uniformly distributed

- note that Hammersley “looks” more uniform than does Halton, which
xxxxx is one of the reasons why this variant of Halton was developed

– can the uniformity of “uniform” point sets be quantified?

- absolutely, and in many ways

• Uniformity comparisons using quantitative measures of uniformity

– Utopian uniformly distributed point samples have three attributes

- the points are equally spaced

- the points cover the region, i.e., there are no relatively

large subregions that contain no points

- the points are isotropically distributed, i.e., there is no

directional bias in the placement of points

– in 2D, the eye does a great job in using all three attributes
when comparing the uniformity of different point sets

MC Halton Hammersley LHS

- Hammersley wins

– some popular quantitative measures of uniformity are flawed
in that they only consider the spacing between points

– we consider eight measures of uniformity for sampling via

MC, 4 QMCs + Hammersley, LHS

and two other schemes we have not mentioned

COV γ h µ χ ν τ d

Ideal 0 1 0.0707 1 1.414 1 0 0

Monte Carlo 0.5075 88.75 0.1767 3.792 17.17 25.11 0.2833 0.01246
Halton 0.2911 3.37 0.1266 2.325 5.213 5.386 0.1732 0.01057
Hammersley 0.1559 2.94 0.1424 2.003 4.084 2.744 0.1257 0.00457
Faure 0.2552 2.70 0.1472 2.245 4.640 3.081 0.1432 0.00926
Sobol 0.5246 12.55 0.1378 2.068 20.16 3.369 0.1453 0.01865
Niederreiter 0.3072 3.05 0.1279 1.879 5.172 3.026 0.1294 0.01630
Latin hypercube 0.4771 8.60 0.1690 3.382 13.11 10.04 0.2907 0.02130
IHS 0.1588 2.46 0.1225 2.115 5.551 3.103 0.1033 0.00549
??? 0.0509 1.30 0.0792 1.311 1.720 1.456 0.0355 0.00107

Eight measures of uniformity for different types
of 100 “uniformly” distributed points in the unit square1

brown – flawed measures of sample uniformity green – good measures of sample uniformity

red - best blue - second best

1IHS = improved hypercube sampling; this nomenclature is usurped for a specific method,
when in fact, anything other than MC can is viewed in one way or another as an
“improved hypercube sampling” method

– clearly, we need to say more about ??? sampling

- we will do so later

.

.

.

.

.

.

.

.

.

.

??? Cartesian Monte Carlo

Halton Hammersley Latin hypercube

Nonuniform sampling in hypercubes

• Approaches for nonuniform point sampling similar to the two we discussed
for Monte Carlo sampling can be applied for nonuniform QMC sequences and
Hammersley sampling

– here, we consider an approach that is specific to LHS

• For non-uniform Latin hypercube sampling

- again, the sampling itself can incorporate the PDF ρ(y)

– one means for doing so proceeds as follows

- given a PDF ρ(y) =
∏N

n=1 ρn(yn) defined

for y ∈ Γ that has independent components

- for each n = 1, . . . , N ,

choose subintervals {[yn,n′−1, yn,n′]}Nn′=1 so that

0 = yn,0 < yn,1 < . . . < yn,N−1 < yn,N = 1

and so that∫ yn,n′

yn,n′−1

ρ(yn)dyn is independent of n′

e.g., so that if ρ(y1) = 5 for y1 ∈ (y1,2, y1,3) and

ρ(y1) = 3 for y1 ∈ (y1,7, y1,8), we have∫ y1,3

y1,2

5dy1 =

∫ y1,8

y1,7

3dy1

– as a result, the probability that a sample point is in a
subinterval [yn,n′−1, yn,n′] is the same for all subintervals

thus large PDF ⇒ narrow subbintervals

small PDF ⇒ wide subintervals

=⇒ points cluster in narrow subintervals in which the PDF large

⇓ ⇓
ρ1(y1) ρ1(y1)

large small

ρ2(y2) small ⇐

ρ2(y2) large ⇐

What makes a set of sample points good?
– regardless of dimension, i.e., even for N = 2

regardless of the number of sample points M

• Of course “good” can depend on the use one makes of the point set

– here we presuppose we are going to use them for quadrature

although

– what we discuss applies to other settings as well

• We have already considered good coverage, good spacing, and good isotropy

– using these criteria, we were led to come observations
about the relative quality of different point sets

.

.

.

.

.

.

.

.

.

.

Cartesian Monte Carlo

great coverage big areas devoid of sample points

Halton Hammersley Latin hypercube ???

not as bad as Monte Carlo – – – but Halton and LHS still quite bad

Hammersley not too bad, at least in 2D – – – ??? best

• However, there are additional criteria that should be met before one can label
a particular sampling scheme as being a better than other schemes

at least if they are to be used for quadrature

– one such criteria is that

projections of sample points onto lower-dimensional surfaces

should not cluster, and certainly should not coincide

– Cartesian samples are terrible even for N = 2

↑
all 10 sample points in this
column project to a single
point on the bottom side

– ??? samples are bad in this respect

↑
the 8 sample points in this

column project to a very close
clustering of points on the bottom side

- we note that although this feature of ??? point sampling

is bad for the settings such as the

quadrature rules we will soon considerx

it is actually very good for other settings

– coincident or closely-clustered projected points are a bad thing because,
e.g., they can compromise the accuracy of sampling+averaging quadrature
rules

- we want projections onto lower-dimensional faces to look like

– we will get back to this issue

– for this purpose, Latin hypercube samples are great

- e.g.,there is only one sample point in each column

so when projected to the bottom side

there is only one point in each sub-interval

- of course, the same goes for projections onto the left side

- in fact, the projection of Latin hypercubes points in N dimensions

onto faces of lower dimension are also Latin samples

- for example,

if one has Latin hypercubes points in a cube, i.e., N = 3

then

the projection of those points onto the six faces are all

Latin hypercubes points in squares (N = 2)

and

the further projection onto the twelve edges

are all Latin hypercubes points in intervals

• Since LHS is so good at this criteria, why don’t we go ahead and use it?

– in fact, LHS is very popular

– however, LHS sample points can have very bad coverage

- an extreme case is the legitimate LHS point set

• Fortunately, it is a simple matter to take a set of sample points, including
those with good coverage, and turn them into an LHS set

(Cartesian points excluded - we are not interested in them for other reasons)

– we refer to this transformation as the Latinization of a point set

• Here, we illustrate of the Latinization process

a point set 4× 4 bins points in bins – shifting y1

not Latin coordinates

result of shifting – shifting y2 result of shifting –
y1 coordinates now coordinates now a

in different y1 intervals Latin sampling

• At this stage we could, if we so desire, move all
points to the centers of their bin

=⇒ =⇒

– we could also effect the centering as we step through
the different coordinates

- e.g., when we are dealing with y7, we shift the points to

the centers of the y7 intevals

Halton Hammersley ???

Top row: 100 point Halton, Hammersley, and ??? point sets

Bottom row: Latinized versions of the sample points in the top row

- to the naked eye, the movement of points is almost not visible
- to the naked eye, the LHS property is difficult to discern
- we also observe that Latinization does not do much damage to coverage

• What makes coincident or closely clustered projected points bad?

– suppose we want to approximate an integral of a
function f (y) by averaging over M sample points, i.e.,∫

Γ

f (y) dy ≈ 1

M

M∑
m=1

f (ym)

- this is a very, very common use of the hyper-rectangle

sampling schemes we have been talking about

– it is known that the

higher the star discrepancy of a set of points {ym}Mm=1

the worse is the approximation to the integral

(or at least for the estimates for the error in the approximation)

– what is the star discrepancy of a set of points?

– the star discrepancy of a set of {ym}Mm=1 of M points
in the unit hypercube Γ is defined as

D∗M = max
R∈R

∣∣∣∣number of points in rectangle R

M
− volume of rectangle R

∣∣∣∣︸ ︷︷ ︸
DR

where R denotes the set of all rectangles R ∈ Γ having
one corner at the origin

– example: 20 points in the unit square

number of points in R 1 4 12

volume of R 2
32

9
32

15
32

DR 0.125 0.08125 0.13125

- so that the star discrepancy of these 20 points is at least 0.13125

– it is proved that

for any point set {ym}Mm=1 in Γ

and for any ε > 0

there exists an infinitely differentiable function f (y) such that∣∣∣∣
∫

Γ

f (y) dy − 1

M

M∑
m=1

f (ym)
∣∣∣∣ ≥ D∗M − ε

and ∣∣∣∣
∫

Γ

f (y) dy − 1

M

Q∑
m=1

f (ym)
∣∣∣∣ ≤ (variance of f)×D∗M

– it is conjectured that for any
finite set of M points =⇒ D∗M ≥ CN

(lnM)N−1

Mwhere CN depends on N but not on M

– it is also conjectured that for any
infinite set of M points =⇒ D∗M ≥ CN

(lnM)N

Mwhere CN depends on N but not on M

- these conjectures are proven only for N ≤ 2

- note that (lnM)N−1

M →∞ and (lnM)N

M →∞ as N →∞

– for some sampling schemes, upper bounds for the star discrepancy have
been established

- for Halton sequences D∗M ≤ C ′N
(lnM)N

M

so that CN
(lnM)N

M ≤ D∗M ≤ C ′N
(lnM)N

M

- for Hammersley sequences CN
(lnM)N−1

M ≤ D∗M ≤M ′
N

(lnM)N

M

– such bounds are often pessemistic

- for example, it has been proven that

for any M ≥ 1, N ≥ 1, and p ∈ (0, 1)

a M -point Monte Carlo point set satisifies

D∗M ≤ 5.7

√
4.9 +

ln((1− p)−1)

N

N 1/2

M 1/2

with probability p

- note that

the bound increases with increasing p

in fact, the bound →∞ as p→ 1

the bound decreases with increasing M

if one chooses p = 0.9 then the

discrepancy bound is 15.30 for M = 1

and 12.65 for M = 100

SAMPLING + AVERAGING QUADRATURE RULES

• A very common use of the sampling schemes in hyper-rectangles
such as the ones we have discussed is for the

approximation of integrals by sampling+averaging quadrature rules

• We consider integrals of the form∫
Γ

G(y)w(y) dy

where

Γ is an N -dimensional hypercube

w(y) is a PDF in a UQ setting or simply

a weight function in more general settings

- here, we assume it is a PDF ρ(y)

• We have in hand M points {ym}Mm=1 in Γ obtained
using one of the sampling schemes

• We can then take two approaches for approximating an
integral by a sampling + averaging quadrature rule∫

Γ

G(y)ρ(y) dy ≈ 1

M

M∑
m=1

G(ym) if one samples the PDF ρ(y)

∫
Γ

G(y)ρ(y) dy ≈ 1

M

M∑
m=1

ρ(ym)G(ym)
if one samples the
points uniformly

– for the first choice, the quadrature weights are all 1/M

- they do not depend on the position of the points

{ym}Mm=1 or on any other geometric quantities

- this is, of course, different from classical quadrature

rules such as Simpson’s rule which have different

weights for different points

– for the second choice, the quadrature weight for a
sample point ym is ρ(ym)/M

– of course, if Γ has edges of infinite or semi-infinite length, one has
no choice, one has to sample non-uniformly according to the PDF ρ(y)

• The second approach seems simpler, but is wasteful

– the density of points is the same

in regions where ρ(·) is small (low probability)

as it is

in regions where ρ(·) is large (high probability)

– unfortunately, many sampling methods

can only be used to sample uniformly

or are

less efficient when sampling non-uniformly

Monte Carlo quadrature

• The canonical (and ubiquitous) sampling + averaging
quadrature rule is, of course, the Monte Carlo rule

• Monte Carlo quadrature has two very great virtues
(in addition to its simplicity)

– virtue 1
its convergence behavior is independent of the dimension N
i.e., independent of the number of parameters

- in this sense, Monte Carlo quadrature
xxxxxx does not suffer from the curse of dimensionality

- all other stochastic quadrature rules used in practice
xxxxxx suffer from the curse

– virtue 2
its convergence behavior is not affected by the smoothness of the integrand

• Unfortunately, Monte Carlo quadrature has also has two great faults

– Fault 1
its convergence behavior is slow Error = O

(σ√
M

)
- so that if one wants to obtain one more digit of accuracy than that

xxxxxx obtained using M samples, one has to obtain 100M samples

– Fault 2
its convergence behavior is not affected by the smoothness of the integrand

- Monte Carlo cannot take advantage of smooth integrands
xxxxxx to reduce the number of samples needed

- other quadratures rules can take advantage of greater smoothness

• Because the complexity of other sampling methods
depends on the parameter dimension N
xxxxxx Monte Carlo will always beat other methods if N is large enough

– so all other methods considered are merely efforts (which have been huge)
directed at increasing the value of N at which Monte Carlo starts winning

Other sampling+averaging quadrature rules
that are (not always) better than MC

• There have been many sampling+averaging quadrature rules proposed
as replacements for Monte Carlo quadrature, including

variance reduction Monte Carlo methods

quasi-Monte Carlo methods

stratified sampling

Latin hypercube sampling and its many “improved” versions

orthogonal arrays

lattice rules

importance sampling

etc.

• In general, these “improved” rules have, in theory, improved rates of
convergence, at least for not too large a value of N

– a typical theoretical result is

Error = O
((lnM)N

M

)
⇐= note the dependence on N

– for small N such as N = 1, 2 or 3, the 1/M term dominates

- example: for M = 100 and N = 3 ⇒ (ln 100)3/100 < 0.05

compare to MC: error = O
(

1√
M

)
⇒ 1/

√
100 = 0.1

for M = 10, 000, QMC error ≈ 0.001, MC error ≈ 0.01

– but, for even moderate N , the (lnM)N term dominates

- example: for M = 100 and N = 10 ⇒ (ln 100)10/100 > 42, 000

- this is a manifestation of the curse of dimensionality

– this estimate is often (very) pessimistic but, still, the
error is large even for moderate values of N and M

• How does one beat the curse?

– especially in the setting of expensive functional evaluations

– all than one can hope to do is to try to push the boundary,

- e.g., develop methods that can treat a larger number of parameters

– not surprisingly, doing something to beat the curse is a huge industry in
the mathematical, natural, social, and engineering sciences

• Some of the approaches use towards doing something about the curse include

– designing better sampling methods so that the number of
expensive functional evaluations can be reduced

– making better used of sampled input data so as to
obtain accurate outputs while incurring lower costs

– reducing the number of parameters by getting rid
of parameters that are not influential

– building surrogates models having outputs that are
cheaper to obtain but are still useful

• We briefly consider one approach towards mitigating costs

• Later on we will also consider other point sets for quadrature rules
that are also useful for interpolation

Analysis of variance (ANOVA) expansions

• An ANOVA-type expansion of a function f (y) of N variables
defined over the hypercube ΓN ∈ RN is given by

f (y) = f0+

N∑
i=1

fi(yi)+
∑
i<j

fij(yi, yj)+
∑
i<j<k

fijk(yi, yj, yk)+· · ·+f12···N(y)

• If the the L2 measure is used, we obtain the
standard ANOVA expansion for which

f0 =

∫
ΓN

f (y) dy

fi(yi) =

∫
KN−1

f (y)
∏
k 6=i

dyk − f0 for i = 1, . . . , N

fij(yi, yj) =

∫
KN−2

f (y)
∏

k 6∈{i,j}

dyk −
N∑
n=1

fk(yk)− f0 for i, j = 1, . . . , N , i < j

etc.

• ANOVA-type expansions have many interesting properties

– the terms in the expansions are all mutually
orthogonal and define projections

– the approximation properties of the expansion are
essentially independent of the specific type of expansion

• Since the last term of an ANOVA-type expansion
is itself a function of N -variables

– it is obvious that any function has an ANOVA-type expansion

– so it seems like we have not accomplished anything by
writing a function in the form of an ANOVA expansion

• However

suppose that the higher terms in an ANOVA-type expansion are “small”

so that the given function f (y) can be well
approximated by the first few terms

– for example, suppose we have that

f (y) ≈ f0 +

N∑
n=1

fn(yn) +
∑
n′<n

fn′n(y′n, yn)

with the sum of the neglected terms being small

– this would then mean that the given function f (y)
of N -variables is essentially the sum of a constant
function, univariate functions, and bivariate functions

• Let’s take a look at the simplest situation for which N = 2
and we have the ANOVA approximation

f (y1, y2) ≈ f0 + f1(y1) + f2(y2)

– we use the ANOVA expansion to approximate the integral
of f (y1, y2) over the unit square Γ2 = [0, 1]× [0, 1]∫

Γ2

f (y1, y2)dy1dy2

≈
∫ 1

0

∫ 1

0

f0dy1dy2 +

∫ 1

0

∫ 1

0

f1(y1)dy1dy2 +

∫ 1

0

∫ 1

0

f2(y2)dy1dy2

= f0 +

∫ 1

0

f1(y1)dy1 +

∫ 1

0

f2(y2)dy2

- this is great because now we only have to

deal with one-dimensional integrals

– also, let’s suppose we want to approximate the
two-dimensional integral via sampling∫

Γ2

f (y1, y2)dy1dy2 ≈
1

M

M∑
m=1

f (y1,m, y2,m)

where {y1,m, y2,m}Mm=1 are M sample points in Γ2

– if we further approximate by using the truncated
ANOVA expansion of f (y1, y2), we now have∫

Γ2

f (y1, y2)dy1dy2 ≈
1

M

M∑
m=1

f0 +
1

M

M∑
m=1

f1(y1,m) +
1

M

M∑
m=1

f2(y2,m)

– doing one-dimensional sums is less expensive than
doing two-dimensional sums

– but we have to be careful about what sampling scheme we use

– next, let’s look at the worst case sampling scenario,
namely, Cartesian sampling over

√
M ×

√
M points

as in the M = 100 case

and let’s take a look at the 1
M

∑M
m=1 f1(y1,m)

term in the ANOVA expansion

- in the y1 direction we only have a one-dimensional

integral with only
√
M unique points so that

1

M

M∑
m=1

f1(y1,m) =
1√
M

√
M∑

m=1

f1(y1,m)

so that we have a quadrature rule with only√
M samples instead of M samples

• In the only slightly better scenario for which

the projection of points onto lower dimensional

faces form tight clusters

we may still have an M point quadrature rule, but

the quadrature points are poorly distributed

so that the accuracy of the ANOVA terms is compromised

– although we have used the context of approximating integrals

it is clear that the above discussion extends

to other approximation settings

• This discussion about the relation between point sampling and
effective ANOVA expansions can be based on star discrepancies

– the clustering of projected points leads to large star discrepancies

UNDERDETERMINED LINEAR ALGEBRAIC SYSTEMS

• Underdetermined linear algebraic systems arise in myriad applications

– such linear systems have matrices that have more columns than rows

– for example, we could have the following situation

data measured at each

sampling location


︸ ︷︷ ︸

sampling locations

• Thus we consider linear algebraic systems

Az = b where


A is an N ×M matrix with M > N (more columns than rows)

z is an M × 1 column vector

b is an N × 1 column vector

where A and b are a given matrix and a given right-hand side vector

– the case N = 4 and M = 8 looks like

– the task at hand is to determine the vector z

– to keep things simple, we assume that the matrix A has full row rank, i.e.,
no row in the matrix can be expressed
as a linear combination of the other rows

- in this case
the linear system Az = b has an infinite number of solutions

– of course the columns cannot be linearly independent

• All sort of constraints can be placed on the solution z
that enable one to find a unique solution of Az = b
– we consider two popular means for extracting a unique solution of the

linear system

linear algebra class =⇒ find minimum

Euclidean norm solution

compressed sensing =⇒ somehow find a solution vector z

for which many of the

components are zero =⇒
minimize sparsity-inducing norms

• Thus, we consider the two problems

minimize ‖z‖2 subject to Az = b

and

minimize ‖z‖1 subject to Az = b

where if z has dimension M , the 2-norm is defined as

‖z‖2 =
√
z21 + z22 + · · · + z2M

and 1-norm is defined as

‖z‖1 = |z1| + |z2| + · · · + |zM |

• The difference between the outcomes obtained using the
two norms can be explained in the simplest case, namely

N = 1 equation in M = 2 unknowns

• In the two-dimensions we have one equation with two unknowns z1 and z2

az1 + bz2 = c

where a, b, and c are given

– clearly, this equation is underdetermined, i.e., there are an
infinite number of pairs (z1, z2) that satisfy this equation

– we examine two means for extracting a specific
pair (z1, z2) that satisfies az1 + bz2 = c

• First, we minimize the 2-norm
√
z21 + z22 (the standard linear algebra approach)

substitution az1 + bz2 = c =⇒ z21 + z22 = z21 +
1

b2
(c− az1)2

set first derivative = 0 2z1 −
a

b2
(c− az1) = 0 =⇒ 2z1(b

2 − a2) = ac

b2

minimizing point z1 =
ac

2b2(b2 − a2)
6= 0 z2 =

bc

2a2(a2 − b2)
6= 0

- in case it is of interest, the 2-norm of the minimizing solution is given by

‖z‖2 =
√
z21 + z22 =

(
c2

4(a2 − b2)2
(a
b
+
b

a

))1/2

• Instead, we minimize the 1-norm |z1| + |z2| (the compressed sensing approach)

|z1| + |z2| ≥ max{|z1| , |z2|}

if |z1| ≥ |z2| =⇒ |z1| + |z2| is minimized if z2 = 0

=⇒ z1 =
c

a
=⇒ |z1| + |z2| =

∣∣∣c
a

∣∣∣
if |z2| ≥ |z1| =⇒ |z1| + |z2| is minimized if z1 = 0

=⇒ z2 =
c

b
=⇒ |z1| + |z2| =

∣∣∣c
b

∣∣∣
so, if |a| > |b| =⇒ |z1| + |z2| is minimized if z2 = 0 and z1 =

c

a

so, if |b| > |a| =⇒ |z1| + |z2| is minimized if z1 = 0 and z2 =
c

b

– a geometric interpretation of what is happening

optimal (z1, z2)
optimal (z1, 0)

`2-norm ball `1-norm ball

blue line: az1 + bz2 = c

points on the circles all have the same z21 + z22
points on the diamonds all have the same |z1| + |z2|

in each case, the green dots depict the points
on the blue line that are closest to the origin

the black dots depict points on the blue line
that are further away from the origin

– any norm ‖ · ‖• such that 0 ≤ • ≤ 1 is a sparsity-induced norms

- for ‖ · ‖1/2, the picture looks like

• For the Euclidean norm, generalization to
general M and N > M is well known

– one means for determining the z that minimizes the
Euclidean norm of solutions of Az = b is to solve

A(ATA)−1z = f

- this applies for the full-rank case (i.e., the rank r =M)

- for the rank defficient case (r < M)
(ATA)−1 is replaced by a pseudo-inverse of ATA

– another means for determining the optimal z is through
the singular-value decomposition A = UΣVT

- for both the full-rank and rank-defficient cases, the optimal z is

z =

r∑
i=1

uT
i b

σi
vi

where ui and vi denote the columns of U and V, respectively,
and σi denote the singular values

• Determining the z that minimizes the 1-norm of
solutions of Az = b is much less straighforward

GLOBAL POLYNOMIAL APPROXIMATIONS

ORTHOGONAL POLYNOMIALS†

AND

LAGRANGE INTERPOLATORY POLYNOMIALS

†In the uncertainty quantification community, orthogonal polynomial approximation is very unfortunately
very often referred to as “polynomial chaos”

• Polynomials are among the most studied subjects in mathematics

• Great mathematicians (mostly from the late 18th century and the
first half of the 19th century) made fundamental contribution such
as

defining polynomials that have a specific and useful structure

and also

rigorously studying their approximation properties

• For example, one of the most (justifiable) celebrated theorems
in all of mathematics is the Weierstrass approximation theorem

Suppose that f (y) is a continuous function

defined on the interval [a, b]

Then, for every ε > 0, there exists a polynomial p(y)

such that for all y ∈ [a, b], |f (y)− p(y)| < ε

Global polynomial approximations

• Let PM denote the set of all polynomials of degree less than or equal to M

– let {Θm(y)}Mm=0 denote a basis for PM

– of course, there are numerous possible bases in use

- the simplest is the monomial basis for which

Θm(y) = ym for m = 0, 1, . . . ,M

– then all polynomials pM(y) ∈ PM
i.e., all polynomials of degree less that or equal to M

can be expressed in the form

pM(y) =

M∑
m=0

Cmy
m for any set of constants {Cm}Mm=0

– later, we consider other, more practical, bases

• Now consider the multivariate case for which we have an

N -vector y = (y1, y2, . . . , yN) of variables

– in general, for each yn, one could use polynomials
of degree Mn and a basis {Θn,m(yn)}Mn

m=1

- for the sake of simplicity, we assume that Mn = M for all n

- there are often good reasons for sometimes choosing

different degree polynomials for each yn

• Denote by Pn,M the set of all polynomials in yn
of degree less than or equal to M

– let {Θn,m(yn)}Mm=0 denote a basis for Pn,M

• Let µ = (µ1, µ2, . . . , µN) denote a multi-index

=⇒ an N -vector whose components are non-negative integers

– then, a set of multi-dimensional polynomials PN,M contains
polynomials pN,M which are a sum of terms having the form

yµ1
1 y

µ2
2 · · · y

µN
N

– let |µ| =
N∑
n=1

µn

– choosing different constraints on µ lead to different types of polynomials

• Assumption: We have in hand a function f (y) that is smooth
with respect to an N -vector y of variables

smooth ⇐⇒ f (y) possesses a “sufficient”

number of derivatives

Consequence: f (y) can be well-approximated by
by multivariate global polynomials

– what does “sufficient” mean?

- to achieve full accuracy

f (y) has to possess M + 1 derivatives

−→ the larger M is, the better the accuracy

- however

if f (y) possess M̃ + 1 derivatives, where 0 ≤ M̃ ≤M

−→ one only achieves the accuracy of a

polynomial of degree M̃ < M

=⇒ the smoothness of f (y) matters!

Total degree polynomials

• For a given integer M ≥ 0, let {ψtdk (y)}Ktd
k=1 denote the set of

distinct multivariate polynomials such that{
ψtdk (y)

}Ktd

k=1
=
{ N∏
n=1

Θn,mn(yn)
}

where Θn,mn(yn) ∈ Pn,M and |µ| =
N∑
n=1

µn ≤M

– the highest degree term in any of the multivariate polynomials is M

- thus, if N = 2 and M = 2, we have |µ| = µ1 + µ2 ≤ 2 so that

we have terms such as y2
1 and y1y2 but not terms like y2

1y2

– then, polynomials such that |µ| ≤M have the form

ptd(y) = ptd(y1, y2, . . . , yN) =

Ktd∑
k=1

Ckψ
td
k (y)

for any set of constants {Ck}Ktd
k=1

– the degrees of freedom, i.e., the number of terms,
in such polynomials is given by

Ktd =
(N + M)!

N !M !

where N = dimension of the vector y

M = maximal degree of any of the

N -dimensional global poloynomials used

– we can choose any set of multivariate polynomials
{
ψtdk (y)

}Ktd

k=1

having total degree ≤M and that are linearly independent†

- they do not have to be monomials

- in fact, one should not use monomial bases

– for example, if N = 2 and M = 3, we have

|µ| = µ1 + µ2 ≤M = 3

and

Ktd =
(N + M)!

N !M !
=

(2 + 3)!

2! 3!
= 10

and we have the set of 10 distinct basis functions{
ψ1(y1, y2) , . . . , ψ10(y1, y2)

}
such that

span



ψtd1 (y1, y2)

ψtd2 (y1, y2)

ψtd3 (y1, y2)

ψtd4 (y1, y2)

ψtd5 (y1, y2)

ψtd6 (y1, y2)

ψtd7 y1, y2)

ψtd8 (y1, y2)

ψtd9 (y1, y2)

ψtd10(y1, y2)



= span



Θ1,0(y1) Θ2,0(y2)

Θ1,1(y1) Θ2,0(y2)

Θ1,0(y1) Θ2,1(y2)

Θ1,1(y1) Θ2,1(y2)

Θ1,2(y1) Θ2,0(y2)

Θ1,0(y1) Θ2,2(y2)

Θ1,2(y1) Θ2,1(y2)

Θ1,1(y1) Θ2,2(y2)

Θ1,3(y1) Θ2,0(y2)

Θ1,0(y1) Θ2,3(y2)



= span



1

y1

y2

y1y2

y2
1

y2
2

y2
1y2

y1y
2
2

y3
1

y3
2


⇓ ⇓

this does not imply that, e.g., Θ1,2(y1) Θ2,1(y2) = y2
1y2

Tensor product polynomials

• Alternately, one could use a tensor product basis

{
ψtpk (y)

}Ktp

k=1
=
{ N∏
n=1

Θn,m(yn)
}

where
Θn,m(yn) ∈ Pn,M and µn ≤M for all n

– now the highest degree term in any of the

polynomials is M in each yn

- thus, if M = 2, we not only have terms like y2
1 and y1y2,

but we now also have terms like y2
1y

1
2 and y2

2y
2
2

– we still have polynomials having the form

ptp(y) = ptp(y1, y2, . . . , yN) =

Ktp∑
k=1

Ckψ
tp
k (y)

for any set of constants {Ck}
Ktp

k=1, but now the degrees of freedom,
i.e, the number of terms, is

Ktp = (M + 1)N > Ktd

where N = dimension of the vector y

M = maximal degree in any variable yn of any of the

N -dimensional global poloynomials used

– for example, if N = 2 and M = 3, we now have

Ktp = (M + 1)N = (3 + 1)2 = 16

and we now have the set of 16 distinct basis functions{
ψ1(y1, y2) , . . . , ψ16(y1, y2)

}
such that

span



ψtp
1 (y1, y2)

ψtp
2 (y1, y2)

ψtp
3 y1, y2)

ψtp
4 (y1, y2)

ψtp
5 (y1, y2)

ψtp
6 (y1, y2)

ψtp
7 (y1, y2)

ψtp
8 (y1, y2)

ψtp
9 (y1, y2)

ψtp
10(y1, y2)

ψtp
11(y1, y2)

ψtp
12(y1, y2)

ψtp
13(y1, y2)

ψtp
14(y1, y2)

ψtp
15(y1, y2)

ψtp
16(y1, y2)



= span



Θ1,0(y1) Θ2,0(y2)
Θ1,1(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,1(y2)
Θ1,2(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,2(y2)
Θ1,2(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,3(y2)
Θ1,1(y1) Θ2,3(y2)
Θ1,2(y1) Θ2,3(y2)
Θ1,3(y1) Θ2,3(y2)
Θ1,2(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,1(y2)
Θ1,3(y1) Θ2,2(y2)



= span



1
y1
y2
y1y2
y21
y22
y21y2
y1y

2
2

y31
y32
y1y

3
2

y21y
3
2

y31y
3
2

y21y
2
2

y31y
1
2

y31y
2
2



– but now we fall prey to the the dreaded curse of dimensionality

Global polynomial degrees of freedom

N = M = K = number of

dimension maximal terms in the polynomial

of y degree of using total using tensor

polynomials degree bases product bases

3 3 20 64

5 56 216

5 3 56 1,024

5 252 7,776

10 3 286 1,048,576

5 3,003 60,046,176

20 3 1,771 > 1×1012

5 53,130 > 3×1015

100 3 176,851 > 1×1060

5 96,560,646 > 6×1077

• As N and M increases, it seems that

– using total degree polynomials is a bad idea

– using tensor product polynomials is a really bad idea

– tensor product polynomial approximation involves
more terms compared to total degree approximation

- unfortunately, the additional terms do not improve the

convergence rate (as M increases) of the approximation

- although the convergence rates are the same

tensor product polynomial approximation could

result in smaller absolute errors

but, of course, incurring (possibly much) larger costs

=⇒ you cannot do better than total degree approximation!

• Before proceeding further, we mention some global
approximations that we do not consider in detail

• Of course, when thinking about global approximations of a function, the first
thing that comes to mind for anyone who has taken a calculus course is Taylor
polynomial approximation

– the Taylor polynomial approximation of a given
function f (y) with respect to ŷ is

f (y) ≈
∑

0<|µ|≤M

tµ(y − ŷ)µ

where

(yµ − ŷ)µ =

N∏
n=1

(yn − ŷn)µn and tµ =
1

µ1!µ2! · · ·µN !
∂µy f (ŷ)

– note that Taylor polynomials are expressed in terms of
monomials, i.e., each term is a power of (yn − ŷn)

• Further afield are global approximations of a function via non-polynomial bases

– Fourier series are the prime example

– we do not consider such approximations, but note
that they are useful in many settings

– here, we consider

global orthogonal polynomial approximation

and

global Lagrange polynomial interpolation

GLOBAL ORTHONORMAL POLYNOMIALS

• For n = 1, . . . , N , let {Θgo
n,m(yn)}Mm=0 denote the set of polynomials in R of

degree less than or equal to M that are orthonormal with respect to an

interval [an, bn] and a weight function φn(yn)

– we have that, for n = 1, . . . , N ,

∫ bn

an

Θgo
n,m(yn)Θgo

n,m′(yn)φn(yn) dyn = δmm′ for m,m′ ∈ {0, . . . ,M}

– note that the cases bn = −∞ or an = +∞ or both are allowable

– note that the set {Θgo
n,m(yn)}Mm=0 is hierarchical in the sense that

degree(Θgo
n,m) = m

=⇒ the polynomials in {Θgo
n,m(yn)}Mm=0 are linearly independent

• Let

ψgok (y) =

N∏
n=1

Θgo
n,mn

(yn) for all mn ∈ {0, . . . ,M} such that
∑N

n=1mn ≤M

– we then have that k ∈
{

1, . . . , Kgotd =
(N + M)!

N !M !

}
– for example, if M = 1 and N = 3 we have the Kgotd = 4 basis functions†

Θgo
1,0(y1)Θ

go
2,0(y2)Θ

go
3,0(y3)

Θgo
1,1(y1)Θ

go
2,0(y2)Θ

go
3,0(y3) Θgo

1,0(y1)Θ
go
2,1(y2)Θ

go
3,0(y3) Θgo

1,0(y1)Θ
go
2,0(y2)Θ

go
3,1(y3)

whereas for if M = 2 and N = 3 we have the Kgotd = 10 basis functions
(suppressing noting the explicit dependences on the yn’s)

Θgo
1,0Θ

go
2,0Θ

go
3,0

Θgo
1,1Θ

go
2,0Θ

go
3,0 Θgo

1,0Θ
go
2,1Θ

go
3,0 Θgo

1,0Θ
go
2,0Θ

go
3,1

Θgo
1,2Θ

go
2,0Θ

go
3,0 Θgo

1,1Θ
go
2,1Θ

go
3,0 Θgo

1,1Θ
go
2,0Θ

go
3,1 Θgo

1,0Θ
go
2,2Θ

go
3,0 Θgo

1,0Θ
go
2,1Θ

go
3,1 Θgo

1,0Θ
go
2,0Θ

go
3,2

†It is convenient to write the N -dimensional polynomials so that each row contains the polynomials of the
same total degree

∑N
n=1mn; thus the first row contains all possible products of the N one-dimensional

polynomials of total degree 0, the second row has total degree 1, etc.

• We see that the functions ψgok (y) are products of one-dimensional
orthonormal polynomials and have total degree less than or equal to M

– we then have that, with Γ = [a1, b1]× [a2, b2]× · · · × [aN , bN],∫
Γ

ψgok (y)ψgok′ (y)φ(y) dy =

∫
Γ

ψgok (y)ψgok′ (y)ΠN
n=1φn(yn) dy

=

N∏
n=1

∫ bn

an

Θgo
n,mn

(yn)Θgo
n,m′n

(yn)φn(yn) dyn = δkk′

– note that we need to write φ(y) =
∏N

n=1 φn(yn), i.e., as a product as well,
so that we know what Θgo

n,m(·) is orthonormal with respect to

– thus, we are restricted to independent random variables and to domains Γ
that are (possibly infinite) hyper-rectangles

• It is easy to see that the set {ψgok }
Kgotd
k=1 of N -dimensional polynomials is a

basis for the complete polynomial space of degree M , i.e.,

span{ψgok }
Kgotd
k=1 = all polynomials of total degree ≤M

• We now have global polynomials of the form

pgo(y) =

Kgo∑
k=1

Ckψ
go
k (y)

– for a given function f (y), the coefficients {Ck}
Kgo

k=1 are determined by setting∫
Γ

f (y)ψgok′ (y)dy =

∫
Γ

pgo(y)ψgok (y)dy

=

∫
Γ

(Kgo∑
k=1

Ckψ
go
k (y)

)
ψgok′ (y)dy

=

Kgo∑
k=1

Ck

∫
Γ

ψgok (y)ψgok′ (y)dy =

Kgo∑
k=1

Ckδkk′ = Ck′

=⇒ the orthonormal polynomial approximation of f (y) is given by

f (y) ≈
Kgo∑
k=1

Ckψ
go
k (y) with Ck =

∫
Γ

f (y)ψgok (y)dy

• Note that one has to compute the integrals

Ck =

∫
Γ

f (y)ψgok (y)dy for k = 0, . . . , Kgo

– in general, one has to approximate the integrals using a quadrature rule

Ck =

∫
Γ

f (y)ψgok (y)dy ≈
Q∑
q=1

Wqf (yq)ψ
go
k (yq) for k = 0, . . . , Kgo

– doing so, one has to evaluate f (y) at the possibly many quadrature points

• Why does it make sense to do all of this?

– suppose that

1. evaluating f (y) is an expensive proposition

2. you want to evaluate f (y) at zillions of y values

– to approximate all Ck, you have to evaluate f (y) Q times

– after you have done that, you have in hand the approximation

pgo(y) =

Kgo∑
k=1

Ckψ
go
k (y) ≈ f (y)

– then,

instead of evaluating f (y) at zillions of new y values

you evaluate pgo(y) at those values

– if evaluating pgo(y) is much cheaper than evaluating f (y), you win big

• If one instead uses tensor product polynomials, as we have seen, such a choice
leads to hugely more costly approximations†

†The tensor product basis is given by
ψgo
k (y) =

∏N
n=1 Θgo

n,mn
(yn) for all mn ∈ {0, . . . ,M} such that mn ≤M

in this case, span{ψgo
k }Kk=1 is the tensor product space of polynomials such that the degree in any

coordinate yn is less than or equal to M ; if we do this, we end up with K = (M + 1)N basis functions;
for example, if M = 1 and N = 3, we have the 8 polynomials (the 4 we had before plus 4 additional ones)

Θgo
1,0Θ

go
2,0Θ

go
3,0

Θgo
1,1Θ

go
2,0Θ

go
3,0 Θgo

1,0Θ
go
2,1Θ

go
3,0 Θgo

1,0Θ
go
2,0Θ

go
3,1

Θgo
1,1Θ

go
2,1Θ

go
3,0 Θgo

1,1Θ
go
2,0Θ

go
3,1 Θgo

1,0Θ
go
2,1Θ

go
3,1

Θgo
1,1Θ

go
2,1Θ

go
3,1

for N > 1 and M > 0 we have that (M + 1)N > (N+M)!
N !M ! ; for a moderate number of parameters or for a

moderately high degree polynomial, we in fact have that (M + 1)N � (N+M)!
N !M ! ; for example,

if M = 6 and N = 3 =⇒ (N +M)!/(N !M !) = 84 and (M + 1)N = 343
if M = 4 and N = 5 =⇒ (N +M)!/(N !M !) = 126 and (M + 1)N = 3125
if M = 2 and N = 7 =⇒ (N +M)!/(N !M !) = 36 and (M + 1)N = 2187

the disparity gets worse as, say, N increases; for example,
if M = 2 and N = 10 =⇒ (N +M)!/(N !M !) = 66 and (M + 1)N = 59059

on the other hand, since the accuracy, i.e., the rate of convergence of global polynomial approximation,
is determined by the degree of the largest complete polynomial space contained in the approximate
space, for the same M , the accuracy obtained using a tensor product space is the same as that obtained
using a complete polynomial space; as a result, by using the latter one can obtain the same accuracy
with substantially fewer degrees of freedom

• Some orthonormal bases

– the univariate Legendre polynomials are orthogonal polynomials over the
interval [−1, 1] with respect to the weight function w(y) = 1

2

weight polynomials

- the multivariate Legendre polynomials are orthogonal polynomials over

the domain [−1, 1]N with respect to the weight functionw(y) = (1/2)N

– the univariate Chebyshev polynomials are orthogonal polynomials over the
interval [−1, 1] with respect to the weight functionw(y) = π−1(1− y2)−1/2

weight polynomials

- the multivariate Chebyshev polynomials are orthogonal polynomials

over the domain [−1, 1]N with respect to the weight function

w(y) = π−N
∏N

n=1
1

(1−y2
n)−1/2

– some other univariate orthogonal polynomials from which one can define
multivariate orthogonal polynomials

weight function support polynomial
1√
2π
e−y

2/2 (−∞,∞) Hermite Hk(y)
1
2 [−1, 1] Legendre Pn(y)
e−y [0,∞) Laguerre Ln(y)

...

...
hundreds - even infinitely - many more

– of course, one does not have to use the same
type of orthogonal polynomials for all yn

- for example, one can use univariate Chebyshev orthogonal polynomials

for y1 and univariate Hermite orthogonal polynomials for y2 which

result in the

domain [−1, 1]× (−∞,∞)

and the weight function φ(y1, y2) =
(

1
π(1−y2

1)−1/2

)(
1√
2π
e−y

2
2/2
)

• What is a good polynomial approximation subspace?

• Several choices for the multi-index µ have been proposed

- we will use the following diagram as a base for

illustrating the outcomes of different choices for µ

- this diagram corresponds to the tensor product case with N = 2

and M = 4 for which there are 25 terms in the polynomial

y4
2

y3
2

y2
2

y2

1

←− y4
1y

2
2

1 y1 y2
1 y3

1 y4
1

– this diagram corresponds to the total degree case with N = 2 and M = 4

for which only the points on or below the magenta line are included

- there are only 15 terms in the polynomial

- however, the rates of convergence of the total degree polynomial

and the tensor product polynomial are the same

=⇒ the terms above the line do not

improve the rate of convergence

– in every following illustration, the lines delineates a total degree polynomial

- the 25 the dots correspond to a tensor product

polynomials with M = 4

- the 15 dots on or below the magenta line correspond

to a total degree polynomials with M = 4

- the 6 dots on or below the green line correspond to

a total degree polynomials with M = 2

• Let P denote a set of polynomials

– regardless of what set P of polynomials one chooses

the accuracy (i.e., the rate of convergence) of the

polynomial approximation is determined by the

largest subset of total degree polynomials

within the given set P that has largest degree

– lets start out with the set Ptp being the set of all
tensor product polynomials with N = 2 and M = 4

- now let Ptd denote the subset of Ptp that contains all
total degree polynomial of the highest degree possible

(all the dots on or below the magenta line
result in degree 4 total degree polynomials)

- suppose that for some reason

we decide to exclude from Ptp all polynomials

that have the y3
1y

3
2 term (the blue circle)

because that term is not included in the total degree polynomial

losing that one term does not affect the accuracy

=⇒ the accuracy remains the same as that of

a degree 4 total degree polynomial Ptd

- now suppose we do something really silly

we decide to exclude from Ptp all polynomials

that have the y1y
2
2 term (the red circle)

because that term is excluded from the degree 4 (and for that

matter, also from the degree 3) total degree polynomials

losing that single term leaves us with the

accuracy of a degree 2 total degree polynomial Ptd

corresponding to the dots on or below the green line

• Are we really being silly?

– the tensor product case: max
1≤n≤N

µn ≤M

- for N = 2 and M = 20, the picture looks like

- on and below the red line, we have all the terms we need

to have degree M = 20 total degree polynomials

– the total degree case:
N∑
n=1

µn ≤M

- for N = 2 and M = 20, the picture looks like

- throwing out all terms corresponding to the dots above the red line

does not compromise the accuracy

the rates of convergence for the degree 20 tensor product

and total degree polynomials are the same

– the hyperbolic cross case:
N∏
n=1

(µn + 1) ≤M + 1

- for N = 2 and M = 20, the picture looks like

- now we have thrown out terms above and below the red dotted

line that corresponded to degree 20 total degree polynomials

so that the total degree polynomials correspond

to the dots on or below the new solid red line

resulting in degree 7 total degree polynomials

- so we have a great reduction in the number of terms

but have also suffered a serious loss of accuracy

– the Smolyak case:
N∑
n=1

dlog2(µn)e ≤ log2(M) with µn ≥ 2

- for N = 2 and M = 20, the picture looks like

- now we have again thrown out terms above and below the red dotted

line that corresponded to degree 20 total degree polynomials

so that the total degree polynomials correspond

to the dots on or below the new solid red line

resulting in degree 10 total degree polynomials

- so we have a great reduction in the number of terms

but have also suffered a serious loss of accuracy

• Anisotropic multivariate polynomials

– by introducing weights into the definitions of the different
types of polynomials, we can induce different polynomial
degrees in different coordinates

the tensor product case: max
1≤n≤N

αnµn ≤M

the total degree case:
N∑
n=1

αnµn ≤M

the hyperbolic cross case:
N∏
n=1

(µn + 1)αn ≤M + 1

the Smolyak case:
N∑
n=1

αndlog2(µn)e ≤ log2(M) with µn ≥ 2

– in some cases, the weights can be predetermined

whereas

in other cases the weights can be determined adaptively

TP TD HC

blue + red: standard red: anisotropic with α1 = 1 and α2 = 1/2

GLOBAL LAGRANGE INTERPOLATION

• Instead of using global orthogonal polynomials,
one can use interpolatory polynomials

• Given a set {ỹk}Kli
k=0 of Kli N -vectors

– for k ∈ {1, . . . , Kli}, let Llik (y; ỹ0, ỹ1, . . . , ỹKli
) denote the set of

Lagrange interpolating polynomials for these points

– these polynomials are required to satisfy the interpolation conditions

Llik (yk′; ỹ0, ỹ1, . . . , ỹKli
) = δkk′ for all k, k′ ∈ {0, . . . , Kli}

– note that each of these polynomials depends on all
the chosen N -vectors ỹ0, ỹ1, . . . , ỹKli

– we now have global polynomials of the form

pli(y) =

Kli∑
k=0

CkL
li
k (y; ỹ0, ỹ1, . . . , ỹKli

)

– for a given function f (y), the coefficients {Ck}
Kgo

k=1 are determined by

f (yk′) =pli(yk′) =

Kli∑
k=0

CkL
li
k (yk′; · · · · · ·) =

Kli∑
k=0

Ckδkk′ = Ck′

=⇒ the Lagrange interpolatory polynomial approximation of f (y)

is given by

f (y) ≈
Kli∑
k=0

f (yk)L
li
k (y)

• Unfortunately, even for a moderate number of variables, it is not an easy to
define a “good” set of interpolation points that can be used to determine a
complete Lagrange interpolant

– it is an easy matter to define a set of interpolation points that can be used
to define a tensor product Lagrange interpolatory polynomial†

– however, as we have seen, this leads to a very inefficient approximation
compared to complete polynomial approximation

• There exists intermediate choices, e.g., Smolyak point sets,

that can be systematically defined in any dimension

– for the Smolyak point sets, Ksmolyak
li >

(M + N)!

N !M !
so that they require

more points compared to total degree polynomial interpolation

– however, we have that Ksmolyak
li � (M + 1)N so that they requires much

fewer points compared to tensor product interpolation

†Unlike the case for orthogonal polynomials, for Lagrange interpolating polynomials it is not easy to define
a total degree polynomial basis from the tensor product basis; for the Lagrange interpolation case, the
tensor product basis is not hierarchical since all Lagrange polynomials are of the same degree

• Some Smolyak grids in two and three dimensions

– the construction of these particular Smolyak grids is based on
a univariate Chebyshev grid

- in fact, you can see the univariate grids along the coordinate axes

– note that the Chebyshev points are not uniformly distributed

- using Chebyshev points results in better accuracy than
using uniformly distributed points

– this Smolyak grid has 29 grid points so that 29 function evaluations have
to be made to build the interpolatory polynomial

– the corresponding 29-point Smolyak interpolant has the same “nominal
accuracy” as does the 15-point total degree interpolant

- however, for even very moderate N , we have
no idea where to place the 15 points

- a “bad” placement of the points can
result in big errors

• We ask the question:

is the restriction of only being able to handle points that are within a
hyper-rectangle make global orthogonal polynomials or Lagrange
interpolatory polynomials useless?

– fortunately, there are settings for which hyper-rectangles
is exactly what one encounters

– most notably, this is the common situation in
the uncertainty quantification (UQ) setting

• What about coverage, equal spacing, and star displacement?

– clearly, sample points such as

break all the rules

- there are big holes, bad projections, and star discrepancies are bad

– we are saved because

- interpolants or quadrature rules using these points

require that the functions involved be smooth

- one does not get the accuracy of such approximations unless

the functions involve have a sufficient number of derivatives

in such cases the smoothness of the functions involved save the day
because the approximations are accurate everywhere in the domain,
including the holes

– furthermore, the quadrature rules associated with
such points involve specific choices of quadrature points

they are not simple sampling & averaging rules

- the weights are chosen by requiring that the quadrature

rule achieves the highest possible accuracy level

UQ examples

• There are many UQ tasks for which

y ∈ Γ is a vector or random variables which are

distributed according to a given PDF ρ(y)

and for which

Γ is an N -dimensional hyper-rectangle

– a partial list includes

determining statistical quantities such as expectations,

moments, variances, covariances, etc.

estimating the probability of failures

finding extremal values

– here, we consider the first two tasks

• First consider the

evaluation of integrals having integrands that depend on a function f (y)

– specifically, consider integrals of the form∫
Γ

G
(
f (y)

)
ρ(y) dy

– the function G(·) determines what statistical
information about f (y) is desired

G(f) = f

expected value of f ⇐ E(f) =

∫
Γ

f (y)ρ(y) dy

G(f) = f 2

second moment of f ⇐ M2(f) = E(f 2) =

∫
Γ

(
f (y)

)2
ρ(y) dy

G(f) = (f − E(f))2

variance of f ⇐ V(f) =

∫
Γ

(
f (y)− E(f)

)2

ρ(y) dy

. covariances, higher moments

– in general, we have to approximate such integrals using a quadrature rule∫
Γ

G
(
(f (y)

)
ρ(y) dy ≈

Q∑
q=1

Wqρ(yq)G
(
f (yq)

)
- requires Q evaluations of f (y)

- question: what are good quadrature points to use?

– a good approach is to choose the quadrature points to be
the interpolation points of a good interpolant of f (y)

- doing so, one can

- systematically determine the weights Wq

- derive estimates for quadrature errors

from estimates for interpolation error

– for example, the Smolyak points that were used for Smolyak
interpolation can be also used as quadrature points

• Another UQ task is to determine failure probabilities

Prob[f (y) > f0] for a given f0

- e.g., what is the probability that f (y) exceeds

the value f0 at which the bridge falls down?

Prob[f (y) > f0] =

∫
Γ

ρ(y)Xf(y)>f0
(y)dy

where X·(y) denotes the indicator function

– this integral is often approximated by a massive sampling/rejection
method so that lots evaluations of f (y) are utilized

- if instead of sampling f (y), we sample an approximation

of f (y), be it an orthogonal polynomial or an interpolant

or some other surrogate

substantial saving could be made, especially if sampling f (y) is expensive

The need for smoothness

• The product rules we have discussed, including the sparse-grid rules, putatively
achieve greater accuracy as the polynomial precision increases

– actually achieving the increased accuracy requires
the integrand be “sufficiently” smooth,

i.e., to have a “sufficient” number of continuous derivatives

• For an integrand that is not sufficiently smooth

e.g., for the absolute value function or any discontinuous function

the sparse-grid approach using global polynomial interpolatory

quadrature rules result in generally very bad approximations

– the same comment holds for global
orthogonal polynomial approximations

• For example, in dimension N = 6, let f (y) denote the
indicator function of the unit ball embedded in a unit cube

here we illustrate with the N = 2 setting

f (y1, y2) = 1

f (y1, y2) = 0 −→

– the table shows the non-convergence of
CC sparse grid quadrature for this example

– for comparison purposes, the table also provides the convergence history
of Monte Carlo approximate integration for the same function

Q SG estimate SG error MC estimate MC error

1 4.000 1.167 0.00000 5.16771
13 64.000 58.832 0.00000 5.16771
85 -42.667 -47.834 3.01176 2.15595

389 -118.519 -123.686 4.77121 0.39650
1457 148.250 143.082 5.16771 0.01555
4865 -24.682 -29.850 5.41994 0.25226
exact 5.16771 – 5.16771 –

Comparison of sparse grid and Monte Carlo approximations

of the integral of a discontinuous function

PIECEWISE POLYNOMIAL APPROXIMATIONS

• We briefly consider piecewise polynomial approximations of a function f (y)

• There are several reasons why such approximations are of interest

– they are simple to construct

– they can deal with general domains Γ, not just hyper-rectangles

– they can deal with discontinuous functions f (y)

• Let’s start with the one-dimensional case

– piecewise linear and piecewise constant functions

– piecewise linear and piecewise constant functions in one dimensions

uniform grid nonuniform grid
the grid points are referred to as nodes

continuous piecewise linear polynomials
a different linear polynomial ay + b in each subinterval

continuous over the whole interval

discontinuous piecewise constant polynomials
constant in each subinterval, discontinuous at the nodes

discontinuous piecewise linear polynomials
linear in each subinterval, discontinuous at the nodes

a compactly supported continuous piecewise linear
polynomial corresponding to the blue node

the function is 6= 0 only on the subintervals that
contain the blue node

the set of basis functions which span all
continuous piecewise linear polynomials

a basis function for the set two basis functions for the set
of discontinuous piecewise of discontinuous piecewise

constant polynomials linear polynomials
basis functions are 6= 0 on only a single subinterval

– piecewise linear and piecewise quadratic functions in one dimension

we have an interval divided into subintervals (just the same as
for the piecewise linear or piecewise constant polynomial cases)

in each subinterval, we have different quadratic polynomial a + by + cy2

to uniquely define a quadratic polynomial within each subinterval
we need to know its value at 3 points

for this reason, we add the green nodes which are located in the
middle of each subinterval (the green nodes are not grid points) so

that in each subinterval we have 3 points (2 magenta and one green)

we can then define a set of compact continuous basis functions

a basis function which is 1 at a a basis function which is 1 at a
magenta point and 0 at all the green point and 0 at all the
other magenta points and at all other green points and at all

the green points the magenta points

– can also define discontinuous piecewise quadratic basis functions

– can also define piecewise higher-degree basis function,
both contintinuous and discontinuous

• Let’s take a brief look at 2D

the support of a bilinear1 basis function a + by1 + cy2 + dy1y2

the support of a biquadratic basis function
a + by1 + cy2 + dy2

1 + ey1y2 + fy2
2 + gy2

1y2 + hy1y
2
2 + jy2

1y
2
2

1Bilinear polynomials are linear in each variable; biquadratic polynomials are quadratic in each variable

– But, one can use piecewise polynomials for arbitrary domains Γ,
not just hyper-rectangles

=⇒=⇒=⇒
⇓ ⇓

construct a grid construct a grid
⇓ ⇓

=⇒=⇒=⇒

support of the basis function for the blue node

basis function is a piecewise linear function a + by1 + cy2 in each triangle

the basis function is 1 at the blue point and zero at the magenta points
and is zero outside the 4 orange triangles

support of two types of basis function for the
blue node in case of piecewise quadratic polynomials

basis functions are a piecewise quadratic polynomial
a + by1 + cy2 + dy2

1 + ey1y2 + ey2
2 in each triangle

the basis functions are 1 at the blue point and zero at the
magenta points and is zero outside the orange triangles

• It is then an easy matter to construct piecewise polynomials interpolants

– linear interpolants

fpl(y) =
∑

all vertices yk

f (yk)ψ
pl
k (y)

where ψplk (y) denotes the piecewise linear
basis functions corresponding to a vertex yk

– quadratic interpolants

fpq(y) =
∑

all vertices and midsides yk

f (yk)ψ
pq
k (y)

where ψplk (y) denotes the piecewise quadratic
basis functions corresponding to a vertex or a mid-side yk

• There are other approaches to interpolation that

- do not rely on grids

- do not rely on polynomials, piecewise or otherwise

– for example, let’s start with the same points that
we just used for piecewise polynomial interpolation

– with each point we associate a circle

– with each point we also associate, for example,
a Gaussian function centered at that point

– we then use the set of all Gaussian functions associated
with the points as a basis for interpolation

– a class of methods of this type are referred to as
radial basis functions methods

LEAST-SQUARES APPROXIMATIONS

• After having pontificated about the very high pedestal on which I placed
interpolation and least-squares approximation (regression) in the universe of
data science, I would be remiss if I did’t say a few words about the latter

• First, we have a set of pairs {ym, fm}Mm=1 where

{ym}Mm=1 is a set of points in a region Ω

{fm}Mm=1 is a set values associated with the points ym

– fm could be a quantity that is measured at a given ym
alternately, we could have that

fm = f (ym)⇐= fm is the value of a given function f (y) at the point ym

• Second, we have in hand basis set of cardinality K ≤M ,
even K �M , of our choosing {

ψk(y)
}K
k=1

- it could be a global or local polynomial basis, or a

Fourier basis (sines and cosines), or any of the

many, many other bases that are available

– given the basis, we can choose as set {Ck}Kk=1 of
constants to define the function

pK(y) =

K∑
k=1

Ckψk(y)

• Given the data {ym, fm}Mm=1

and having chosen

a basis
{
ψk(y)

}K
k=1

we want to find a data-informed set of coefficients {Ck}Kk=1

• We do so by

minimizing over all
possible sets {Ck}Kk=1

(M∑
m=1

∣∣plsM,K(ym)− fm
∣∣2)

– for example, if K = M we can set plsM,M(ym) = fm
so that plsM,M(y) is an interpolant which obviously

is a minimizer ⇐=
∑M

m−1

∣∣plsM,K(ym)− fm
∣∣2 = 0

• Least-squares can do things that interpolation cannot do

– least-squares can deal with general domains in multi-dimensions

– least-squares can deal with scattered data

– other than having M > K, the cardinalities M of the data set
and K of the basis do not have to be related

• We can have 5 data points and a linear polynomial

• A linear polynomial is perhaps more useful
if the data points are not widely scattered

• For this data set a quadratic polynomial does a better job than a linear poly-
nomial

• One can also consider minimizing

M∑
m=1

∣∣p`1M,K(ym)− fm
∣∣1

– solving this minimization problem is considerably more difficult
compared to solving the least-squares minimization problem

DETERMINING PDFs

Input PDFs – does one know what they are?
What about output PDFs?

• Very often, it is tacitly assumed

- that one knows the PDFs ρn(yn) of the input parameters

- or even the joint PDF ρ(y) of an input parameter vector

• Actually, in practice,

one often does not know much about the statistics of the input parameters

– one is lucky if

- one only knows a range of values for an input parameter

i.e., maximum and minimum values

- in which case there is not much one can do but assume that

the parameter is uniformly distributed over that range

– if one is luckier, one knows

- the mean and variance of the input parameter

- in which case there is not much one can do other than

assume that the parameter is normally distributed

– of course, one may be completely wrong in assuming
simple probability distributions for a parameter

bi-modal and uni-modal PDFs having the same mean and variance

• The difficulty arises because only the Gaussian PDF is
uniquely determined by its mean and variance

- i.e., by its first and second moments

– all other PDFs also possess higher moments

– the situation is even worse in the multi-parameter case for which only very
special Gaussian PDFs (but not general ones) can be determined from the
parameter means and variances

- for general multivariate Gaussian PDFs, one also
has to know the covariances between parameters

• Any additional information one has about an
input PDF can result in a better “guess”

- one knows the support of the PDF can only take positive values

(in such a case, log-normal PDFs are often used)

- one knows that the PDF is bi-modal

• The lack of knowledge about input PDFs leads to the
need to solve stochastic model calibration problems

i.e., can we do better than guessing

– naturally, this is very active field of research

• But, can we really do better than guessing?

– yes we can if we have data available from,
e.g., experimental measurements,
field observations, simulations, etc.

• What about output PDFs?

– the ideal QoI task is to

- given a model output f (y) (which may be continuous or discrete)

and its input PDF ρy(y)

- determine (at least approximately) the output PDF ρf(f) for f itself

– having obtained ρf(f), one can obtain values of the model output
f by simply sampling ρf(f) instead of resorting to solving the model

• The main difference between constructing input and
output PDFs is the source of the data needed

- for the input PDF, the data can come from many sources

- for the output PDF, the data usually comes from model simulations

– we consider three approaches for obtaining (approximate) PDFs from data

Histograms

• A histogram approximation of a PDF ρ(z) is constructed
via sampling and binning

• Assume that we know that the values of z are restricted
to a finite interval [a, b]

– then, subdivide the interval [a, b] into K bins

- choose all the bins to have the same length
(b− a)

K

– we have available a data set {z(i)}big numberi=1

– we count the number of z(i) that are in each bin

- if a z(i) 6∈ [a, b], we can add bins

– we normalize the bin heights so that the total
area of the histogram is = 1

100 200 400 300 0.1 0.2 0.4 0.3
number of samples areas of the bins

in each bin total area = 1
raw normalized

1000 samples distributed into bins
then normalized so that the total area = 1

- of course, can get the corresponding CDF by stacking bins, left to right

0.1 0.3 0.7 1.0

• Now suppose we have

– a vector z = (z1, z2) of independent random variables

with z1 ∈ [a1, b1] and z2 ∈ [a2, b2]

and with the joint PDF ρ(z) = ρ1(z1)ρ2(z2)

– a sample point is determined in each direction by
sampling and binning according to each PDF

0.1 0.2 0.4 0.3 0.1 0.2 0.4 0.2 0.1

binning samples z1 binning samples z2

according to the PDF ρ1(z1) according to the PDF ρ2(z2)

• The bi-variate histogram then has 20 rectangular bins

- the areas above each bin are entered into the boxes below

- the sum of the areas = 1

0.1 0.01 0.02 0.04 0.03 Σ = 0.1

0.2 0.02 0.04 0.08 0.06 Σ = 0.2

0.4 0.04 0.08 0.16 0.12 Σ = 0.4

0.2 0.02 0.04 0.08 0.06 Σ = 0.2

0.1 0.01 0.02 0.04 0.03 Σ = 0.1

0.1 0.2 0.4 0.3

• The binning approaches just considered can be straightforwardly generalized
to handle, e.g., in one dimension, bins of different lengths

• For the multivariate case, it can also be generalized
to handle non-separable PDFs

• The multivariate binning approach just considered is well and good if one is
dealing with two or three parameters, but as we have seen in other settings,
it is not practical even in moderately higher dimensions

- it falls prey to the curse of dimensionality

– for one thing, one would have to have a humongous number of samples to
sufficiently fill the bins so that one obtains a useful histogram

- if one samples uniformly

10 bins in each coordinate in 6 dimensions =⇒ 1,000,000 bins

1,000,000 samples =⇒ on the average, one sample per bin ⇐= 1,000,000 bins

Kernel density estimators

• Kernel density estimators (KDE) have the form

ρ(z) ≈ 1

Kb

K∑
k=1

Φ
(z − zk

b

)
where

zk is a data point

Φ(·) is the kernel function (in other contexts it is

referred to as something else)

usually chosen to be a smooth function

such as a (perhaps modified) Gaussian

b is a parameter that determines how fast the

kernel function decays and what is its support

– a typical kernel function looks like

zk
– a typical KDE estimator (the red curve) of the PDF looks like the

z1 z2 z3 z4

- for any z

the height of the red curve is the sum of

the heights of all the kernel at that point

- if the data points zk are close to each other,

the estimated PDF is larger

than when the data points zk are less close

• Generalization to the multivariate case is straightforward

ρ(z) ≈ 1

Kb

K∑
k=1

Φ
(|z − zk|

b

)

• Kernel density estimators

– result in smooth approximate PDFs
so that, e.g., they may be differentiated

– can be used for scattered data sets {zk}Kk=1

- points in such sets need not be in a hyper-rectangle

Moment expansions

• We consider the classical problem of determining
an approximate PDF from its moments

– warning: in general, PDFs are not uniquely determined by their moments

- e.g., none of the moments corresponding to the PDF

ρ(z) =
1

z
√

2π
e−

1
2(ln z)2

(
1 + a sin(2π ln z)

)
− 1 ≤ a ≤ 1

depend on a

– there have been many methods proposed for PDF recovery from moments

– here, we consider the Gram-Charlier expansion
of a PDF in terms of its moments

- we will consider such expansions in the case of a single parameter

- extensions to multiple parameters exist

- several generalizations and improvements of the

Gram-Charlier approach have also been developed

• If z is random parameter and ρ(z) its associated PDF,
we have that the mth moment Mm is defined by

Mm =

∫ ∞
−∞

zmρ(z) dz

– the zeroth moment is equal to 1 and the first moment
is equal to the mean (expected value) of z

– we assume, without loss of generality,
that z has zero mean and unit variance

- the general case can be reduced to this case by removing the

mean by subtraction and normalizing the variance by scaling

• Let g(z) = 1√
2π
e
−z2

2 denote the PDF for the standard normal distribution

• Let Hm(z) denote the normalized Hermite polynomial of degree m,
where by normalized we mean that Hm(0) = 1

– we have that ∫ ∞
−∞

Hm(z)Hm′(z)g(z) dz = m!δmm′

• Then, the PDF ρ(z) has the expansion

ρ(z) =

∞∑
m=0

cmHm(z)g(z)=
1√
2π

∞∑
m=0

cmHm(z)e
−z2

2

where the coefficients cm, m = 1, . . . ,, are given by

cm =
1

m!

(
Mm −

bm2

2 · 1!
Mm−2 +

bm4

22 · 2!
Mm−4 −

bm6

23 · 3!
Mm−6 + · · ·

)
where bmm′ = m!/(m−m′)!

• Calculating up to first five terms, we have

ρ(z) =
(

1 +
1

6
M3H3(z) +

1

24
(M4 − 3)H4(z) + · · ·

)
e
−z2

2

• In practice, one uses truncations of the Gram-Charlier
expansion to approximate ρ(z)

– the zeroth approximation is the Gaussian PDF g(z) = e
−z2

2

– thus, truncated Gram-Charlier expansions yield approximations
of ρ(z) that are “corrections” of the Gaussian PDF

– often, Gram-Charlier expansions converge slowly which is
why there is continuous search for improvements

• How does one obtain the moments of an output of interest F to use in the
Gram-Charlier formula?

– we assume that F (y) is a scalar quantity that depends on an input
parameter vector y which has an associated joint PDF ρ̂(y)

• The m-th moment we want is

Mm =

∫ ∞
−∞

Fmρ(F) dF

where ρ(F) is the PDF for the output F which we don’t know
(and in fact, which we are trying to find)

– this is not the same as ∫
Γ

Fm(y)ρ(y) dy

• Thus, we are left with trying to estimate Mm from data

• We do this by generating the numbers Fk = F (yk), k = 1, . . . , K,
where yk are sample points in Γ

• Then the m-th moment is estimated by

Mm ≈
1

K

K∑
k=1

Fm
k

– this estimate looses accuracy as m increases so that
in practice, one seldom goes beyond m = 4

• We have given a very bare-bones description of the use of Gram-Charlier
expansions as a means for determining approximate output PDFs

– in practice, there are many nuances about such expansions that have to
be taken care of to render the useful for the intended purpose

- one such “nuance” is that without making some

additional assumptions, Gram-Charlier may be asymptotic

expansions and not necessarily convergent ones

- in such a case, there is an optimal number of terms

i.e., adding more terms makes things worse

• There exist other moment expansions that can be used to estimate PDFs

perhaps most notable are Edgeworth expansions

• We compare the use of Gram-Charlier and Edgeworth expansions
with kernel density estimation (KDE)

CPU times for a single function evaluation [sec]

KDE (K = 106) KDE (K = 500) G-C

N Offline Online Offline Online Offline Online

1 negligible 0.048431 negligible 0.000034 0.007968 negligible

2 negligible 0.047788 negligible 0.000036 0.012642 negligible

3 negligible 0.052763 negligible 0.000050 0.044448 negligible

4 negligible 0.047178 negligible 0.000037 0.334770 negligible

Computational times for a single evaluation of the KDE and the G-C methods
(104 samples are used for the crude histogram).

KDE, Gram-Charlier, Edgeworth, and histogram approximations

Bayes

Bayes

• This is a homework assignment

REDUCED-ORDER MODELING

• “Reduced-order modeling” should be in quotation
marks in the title slide because

– on the one hand
there are a huge number of data science tasks than one can
reasonably characterized as being “reduced-order modeling”

- in fact, anytime one replaces an expensive task with a cheaper one
that still produces good enough outputs can be viewed as an
exercise in reduced-order modeling

– on the other hand
there are communities in which “reduced-order modeling”
has a narrower definition

- as will be become apparent, here, we take the second view

- but fear not, “reduced-order modeling” has been as is still
alive and kicking in the other lectures

• The need for reduced-order modeling

– the approximate solution of complex models using standard approaches is
often expensive with respect to both storage and CPU costs

– as a result, it is difficult if not impossible, to deal with a number of
situations such as

- continuation or homotopy methods for computing model solutions

- parametric studies of model solutions (multiple model solutions)

- optimization and optimal control problems (multiple model solutions)

- feedback control settings (real-time model solutions)

- uncertainty quantification (multiple model solutions)

- · · · · · · · · ·

– not surprisingly, lots of attention has been paid to
reducing the costs expensive model solutions

by using
reduced-order models

•What do we mean by reduced-order modeling?

– we have in hand a model =⇒ M(U ;α) = 0
α is a given input
U is the desired output

- so the task at hand is given α, determine U

– the model may be a discrete (e.g. molecular dynamics)
or continuous (e.g., partial differential equations)

- in the latter case, one can seldom find an exact solution
so that the continuous model is discretized

- so, we go ahead and assume that the model
M(U ;α) = 0 is a discrete one

– we are interested in settings (such as uncertainty
quantification, optimization,) in which

- determining the solution U of the model M(U ;α) = 0
is computationally (very) expensive

- many solutions Ui of the model M(Ui;αi) = 0
corresponding to many inputs αi are needed

– to ameliorate this situation
we construct a reduced-order model Mrom(Urom;α) = 0

for which

- determining Urom is computationally very inexpensive

- given α, Urom is an acceptably accurate approximation
of the expensive full-model solution U

– to construct the reduced-order models we consider

- one must first determine a “few” solutions of the
the expensive full-order model M(U ;α) = 0

- the high cost of determining those few expensive solutions

is hopefully amortized
by

using the reduced-order
model Mrom(Urom;α) = 0

(instead of the expensive full-order model)

to determine the large
number of solutions needed

• The reduced-order models we construct are based on
the collection of snapshots

– snapshots are full-order model outputs U for several
model inputs α that are costly to obtain

– the snapshots are used to define a reduced-order model
having outputs that are cheaper to obtain

• The reduced-order models of the type we consider are totally
dependent on the information content in the snapshots

– thus, a necessary (but not sufficient) condition
for producing effective reduced-order models
is the generation of “good” snapshots

if it ain’t in the snapshot set,
it ain’t in the reduced-order model

– thus, producing “good snapshots” is key to the
effectiveness of any reduced-order model

- doing so is as much and art as it is a science

• All cases we consider are based on the
construction and then use of a basis set

•We focus on four types of reduced-order models

– for the first two, the basis is simply all the snapshots

- the reduced-basis method

- greedy reduced-basis method

– the other two remove redundant or near redundant
information from the snapshots so that the basis is
smaller in dimension than the number of snapshots

- proper orthogonal decomposition

- ??????

SNAPSHOTS

• The solution of a complex model is determined by parameters
that appear in the specification of the model

– in physics or engineering models, parameters can appear in, e.g.,

geometrical specifications

initial and boundary conditions

source terms

media-dependent coefficients

.

• The solution of the model also depends on
independent variables appearing in the model

– in physics or engineering models
these could be spatial position and time

• Snapshot sets consist of full-order model solutions

– corresponding to several parameter values

– evaluated at several values of one or more
of the independent variables

– combinations of the two

• Thus, for examples, a snapshot set can consist of

– full-order model solutions corresponding to
several sets of design parameters

– full-order model solutions for evaluated at several
time instants during the evolution process

– or both

• Snapshot sets are determined by obtaining solutions of
a large-dimensional full-order discrete system

– the discrete system could come in the form of

- inherently discrete model

- a discretization of a continuous model

- experimental or observational data

• The generation of snapshot sets is an exercise in the design of experiments

• The basic question is

– how does one choose the sets of parameters at which the model
solutions are to be calculated (using expensive, high-fidelity,
full-order computations) in order to generate the snapshot set?

– clearly, some a priori knowledge about features of the model
solutions are very useful in this regard; unfortunately, such
knowledge is not always available

• There is certainly the need for
developing systematic, rational, justifiable, and effective

methodologies for generating good snapshot sets

•We will focus on the intelligent sampling of parameter space

– unintelligent sampling of parameter space can result in
- “bad” snapshot sets
- the need to do “too many” high-dimensional

full-order simulations

Sampling needs for snapshot generation

• Perhaps we only know bounds for the allowable values of the parameters
e.g., ai ≤ αi ≤ bi

– so, we need “intelligent” sampling in
hyper-rectangles in parameter space

• Perhaps we know some other constraint relations between parameters
e.g.,

∑
i α

2
i ≤ 1

– so, we need “intelligent” sampling in more
general regions in parameter space

•Without any additional information about the parameters
– samples should be uniformly distributed

• If there is additional information available about parameters
(correlation information, probability distributions,)
– samples should be nonuniformly distributed

• Clearly, properly sampling parameter space is important

1. in many cases, we do not want to adaptively update the reduced basis

– thus, we only get one chance to generate snapshots that will be
useful throughout many simulations needed in, e.g. an optimization
or control process or an uncertainty quantification exercise

2. we want to use as few runs of the high-dimensional simulation code as
possible in order to generate the snapshots

– thus, for the generation of snapshots, we want to run the
simulation code for relatively few values of the parameters

3. finally, there may be many parameters appearing in the description of the
model that one may want to vary

– thus, parameter sampling may be done
in a high-dimensional parameter space

• Thus, we need methods for (1) effective and (2) sparse sampling
in (3) regions in high dimensions

• Questions & answers

– there are a huge number of available methods for sampling in hypercubes

which one should be used for snapshot generation?

- in an earlier lecture, we already discussed,
at some length, point sampling in hypercubes

- in a later lecture, we will add to that discussion

– what about sampling in general regions and sampling nonuniformly?

- in a later lecture, we also consider an effective
sampling strategy for general regions and
for nonuniform sampling

THE REDUCED-BASIS METHOD

• As was the case for “reduced-order models” which is referred to in a narrow
sense when, in fact, that terminology is applicable to a much wider class of
approximate models

– the terminology “reduced-basis methods” is used to refer to a narrow class
of reduced-order models which are based on using snapshots to define a
low-dimensional basis which is then used to define a reduced-order model

– in fact, “reduced-basis methods” commonly refers to such methods in
which the snapshots themselves constitute the basis

– this is in contract to POD reduced-order modeling (which we will look at
shortly) in which the basis, while still using the snapshots, is defined by
removing redundant or nearly redundant information from the snapshot
set

• As a result

approximate model solutions have the form of
a linear combination of all the snapshots

• In this class of methods, there are many
choices for the reduced basis

– we consider

- Lagrange bases

- Hermite bases

- Taylor bases

• Lagrange bases

– Lagrange bases consist of snapshots of model solutions corresponding to
several different values of the input parameter vector α

- one first samples M parameter vectors {αm}Mm=1

- for each parameter vector
a full-order model solution U(αm) is obtained
using a standard (and expensive) technique

such as, in the PDE case, finite element or finite volume methods

- the Lagrange reduced basis is then simply allM solutions {U(αm)}Mm=1

– for a parameter α 6∈ {αm}Mm=1, the Lagrange reduced-basis
approximation Ulagrange(α) then has the form

Ulagrange(α) =

M∑
m=1

CmU(αm)

– the coefficients {Cm}Mm=1 are determined
by solving the model using the reduced basis

instead of the standard a standard full-order basis
such as a finite element basis

• Hermite bases

– Hermite bases consist of snapshots of model solutions and derivatives
of model solutions corresponding to several different values of the input
parameter vector α that has N components

- one first samples M parameter vectors {αm}Mm=1

- for each parameter vector αm

a model solution U(αm) is obtained
as are

the N derivatives {U (n)(αm)}Nn=1 of U(αm) with respect
each of the N components of the parameter vector

- the model solution U(αm) is obtained by a standard
(and expensive) full-order technique

in fact, they are the same as those obtained
for the Lagrange reduced-basis

- the derivatives {U (n)(αm)}Nn=1 of the model solution are obtained by
first differentiating the model equations with respect
to each N components of the parameter vector

and then
solving the resulting differentiated models by a
standard (and expensive) full-order technique

- note that if even if one has a nonlinear model, all the differentiated
models are linear in the derivatives U (j)(αn)

- the Hermite reduced basis is then simply
all M solutions {U(αm)}Mm=1

plus

all MN derivative solutions
{
{U (n)(αm)}Nn=1

}M
m=1

– for a parameter α 6∈ {αm}Mm=1, the Hermite reduced-basis approximation
Uhermite(α) then has the form

Uhermite(α) =

M∑
m=1

Cm,0U(αm) +

M∑
m=1

N∑
n=1

Cm,nU
(n)(αm)

– the coefficients
{
{Cm,n}Nn=0

}M
m=1

are determined by

solving the model using the reduced basis

instead of a standard full-order basis
such as a finite element basis

• Taylor bases

– Taylor bases are like Hermite bases but which not not only
include model solutions and first derivatives of model solutions

but additionally
include higher-order derivatives of model solutions

– the number of higher-order derivatives grows very rapidly
as the number of design parameters increase

- e.g., if one has N = 10 design parameters
there are 55 different second derivatives

– thus, the dimension of the Taylor reduced basis grows
quickly with the number of parameters and the number
of derivatives used

Computational examples

• The driven cavity problem

- flow in a box with the top lid moving from left to right

Horizontal velocity component along the vertical mid-line of the cavity

two Taylor bases generated at a Reynolds number = 400

shown are the full-model solutions for Reynolds number = 400 and 1000

also shown are the reduced-order solutions for Reynolds number = 1000
using Taylor bases with up to second derivatives and up to fourth derivatives

the basis is constructed taking snapshots with the Reynolds number 400

and is then used to produce solutions at Reynolds number 1000

Horizontal velocity component along the vertical mid-line of the cavity

Lagrange basis generated using Reynolds numbers = 100, 300, 500, 700

Hermite basis generated using Reynolds numbers = 500, 700

Shown are the full-model and the two reduced-basis solutions for Reynolds number = 1200

- note that this Reynolds number is larger than
the Reynolds numbers used to generate the reduced basis

• Optimal control of flow over a forward facing step

- scalar control: constant horizontal velocity component
along a section of the lower wall
immediately behind step

- functional to be minimized: L2 norm of the vorticity

- Lagrange basis functions were generated using
6 values for the scalar control

0, 0.1, 0.15, 0.2, 0.25, 0.3

Top to bottom: uncontrolled flow, full-model optimally controlled flow,
Lagrange reduced-order model optimally controlled flow

GREEDY REDUCED-BASIS METHODS

Greedy reduced-basis methods are attempts to sample snapshots more
intelligently and thus reduce the number of full-order model solutions
needed to construct a good reduced basis

Construction of the greedy reduced basis

• To begin

– choose a training set Ξtrain of Mtrain points {zm}Mtrain
m=1

in a sample domain Γ

- these points could be chosen randomly or deterministically

- to keep the exposition simple, we number the points
in the order they are used

– using the expensive full-order model
compute the solutions U fo

m (zm), m = 1, . . . ,Mtrain,
corresponding to zm

– choose an initial set of points {zm ∈ Ξtrain}Minitial
m=1

- if Minitial = 1, i.e., only one point is chosen,
it is usually chosen somewhere near the center of Γ

- if multiple points are chosen,
then they can distributed uniformly in Γ
or distributed non-uniformly if something is known a priori about

where one should concentrate the points

• For M = Minitial,Minitial + 1, . . .

– assume we have in hand ⇐= clearly this is true for M = Minitial

- a set of points ΞM = {zm}Mm=1 ⊂ Ξtrain

- a set of corresponding expensive model solutions {U fo
m (zm)}Mm=1

⇐= this is the current candidate for the reduced basis
- it contains M snapshots of the full-order model

– the reduced-basis solution is a linear
combination of the current set of snapshots

U rb
M(z) =

M∑
m=1

Cm,M(z)U fo
m (zm)

where the coefficients {Cm,M(z)}Mm=1 are determined
by solving the model using the reduced basis

• The next step is to determine the point

zm̃ ∈ Ξtrain \ {zm}Mm=1

i.e., a point in the training set that is not one of the points already visited

such that, in some suitable norm,

‖U rb
M(zm̃)− U fo

m̃ (zm̃)‖ ≥‖U rb
M(zm)− U fo

m̃ (zm)‖

for all m = M + 1, . . . ,Mtrain

⇐= the unvisited point zm̃ in the training set
at which the reduced-basis solution differs
the most from the full-order solution

• if ‖U rb
M(zm̃)− U fo

m̃ (zm̃)‖ is less than a desired tolerance

- terminate

- and define the final reduced basis by

{U fo
m (zm)}Mm=1

• if ‖U rb
M(zm̃)− U fo

m̃ (zm̃)‖ is greater than a desired tolerance

continue the loop by

- choosing zM+1 = z̃ and U fo
M+1(zM+1) = U fo

M (zm̃)

- adding U rb
M+1(zM+1) to the reduced basis

=⇒ we have the new reduced basis {U fo
m (zm)}M+1

m=1

• After termination, one can determine a reduced-basis approximation model
solution at any z ∈ Γ

– of course, as is true about any decent reduced-order model, this can be
done cheaply because the number of reduced-basis degrees of freedom is
much smaller than the number of full-order degrees of freedom

• Unfortunately, this is not a practical procedure because it
requires Mtrain solutions of the expensive full-order model

– the number Mtrain has to be sufficiently large to
effect good coverage of the sampling domain Γ

– obtaining a large number of full-order soluions
is exactly what we are trying to avoid!

• This bottleneck caused by

– using the norm of the difference between the
reduced-basis and full-order solutions

can be avoided by instead

– using the residual obtained when one plugs in the
reduced-basis approximation into the full-order model

residualm =M
(
U rb
M(zm);α)

)
for m = M + 1, . . . ,Mtrain

and then choosing, to add to the reduced basis,
the snapshot zm which yields the largest residual

• The steps taken to determine the final reduced bases are much the same for
the impractical approach and the improved residual-based approach, so we
do not provide details about the latter

•We also do not present anything about other variants for greedy-type reduced-
basis modeling or about available convergence estimates

PROPER ORTHOGONAL DECOMPOSITION (POD)
Principal Component Analysis Empirical Orthogonal Eigenfunctions

Karhunen-Loève Expansions Singular Value Decompostion

• Given M snapshot N -vectors {zm}Mm=1

• For K ≤M ≤ N , let {ψk}Kk=1 denote an
arbitrary orthonormal basis of N -vectors

=⇒ ψT
k′ψk = δkk′ for k, k′ = 1, . . . , K

• Let Pψ,Kzm denote the projection of a snapshot zm
onto the K-dimensional space spanned by {ψk}Kk=1

for m = 1, . . . ,M =⇒


Pψ,Kzm =

K∑
k=1

cmkψk

cmk = ψT
kzm for k = 1, . . . , K

– thus Pψ,Kzm is an approximation of the snapshot zm

– then zm − Pψ,kzm denotes

the difference between a snapshot zm
and its projection Pψ,Kzm

onto the subspace spanned by {ψk}Kk=1

• Let the POD error be defined by

Epod =

M∑
m=1

|zm − Pψ,kzm|2 =

M∑
m=1

∣∣∣zm − K∑
k=1

(ψTk zm)ψk

∣∣∣2
=⇒ the sum of the squares of the differences between

the snapshots zm and their projection Pψ,kzm

•We then pose the minimization problem

minimize
over all K-dimensional orthonormal

∑M
m=1

∣∣∣zm −∑K
k=1(ψ

T
k zm)ψk

∣∣2
sets {ψk}Kk=1 of N -vectors

• The POD basis of dimension K is defined as the
set {φk}Kk=1 that solves this minimization problem

• Let S denote the N ×M snapshot matrix
i.e., the matrix

S =
(
z1 , z2 , . . . , zM

)
whose columns are the snapshots zm, m = 1, . . . ,M

– consider the singular value decomposition (SVD)

S︸︷︷︸
N×M

= U︸︷︷︸
N×N

Σ︸︷︷︸
N×M

VT︸︷︷︸
M×M

where
U is an N ×N orthonormal matrix
V is an M ×M orthonormal matrix
Σ is an N ×M diagonal matrix with non-increasing

diagonal entries1 (the singular values)
σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0

– then, the POD basis of dimension K ≤M ≤ N
is given by the first K columns of U

1Some singular values vanish if the snapshot matrix S does not have full column rank

S = U Σ VT

N ×M N ×N N ×M M ×M

magenta: M = 5 snapshot vectors

green + red: the first M = 5 columns of U
span the same 5-dimensional space

as do the 5 columns of S

green: the first K = 3 columns of U
form a POD basis of dimension 3

blue: the M = 5 singular values which

appear in non-increasing size

• It is easy to show that the error of the
K-dimensional POD subspace is given by

Epod =

M∑
m=K+1

σ2m

– thus, if one wishes for the relative error to be
less than a prescribed tolerance ε, i.e., if one wants

Epod ≤ δ

M∑
m=1

|zm|2

one should

choose K to be the
smallest integer such that

M∑
m=K+1

σ2m

M∑
m=1

σ2m

≥ 1− δ

- in practice, we truncate the sums at some Mtrucate > K

Variations on POD

There have been several variations introduced in attempts to “improve” POD

•Weighted POD – gives more weight to some members
of the snapshot set

– can be accomplished, e.g., by including multiple copies
of an “important” snapshot in the snapshot set

• POD with derivatives – get more information into the snapshot set
in order to get a “better” POD basis

– add derivatives or numerical approximations of
derivatives of model solutions to the snapshot set

•H1 POD – change the error measure for POD in
order to get a “better” POD basis

– use H1 norms and inner products (instead of L2)
in the definition and construction of POD bases

• Constrained POD – impose a constraint

– e.g. - symmetry of the POD basis
- basis that leads to conservation of energy
- basis that preserve the Hamiltonian structure of the full-order model

• Adaptive POD – change the POD basis when
it no longer seems to be working

– requires detection of failure of the POD basis

– requires the determination of new snapshot vectors

– naively requires doing a new SVD of the new snapshot matrix

- there are means for partially avoiding this naive approach

POD for partial differential equations

• We consider the two-dimensional Navier-Stokes flow between two offset
circles driven by a counterclockwise rotational body force

– the Navier-Stokes equations are discretized via a finite-element
method having 16457 degrees of freedom

- i.e., we are dealing with snapshot vectors
having dimension N = 16457

- this is what the geometry looks like and
what a grid with 7405 degrees of freedom looks like

– time-stepping is effected over the time interval [0, 5]
using a time step ∆t = 0.01sec

• Snapshots are taken every 0.04sec so that we
end up with M = 125 snapshots

- thus the snapshot matrix S is an 16457 × 125 matrix

5 10 15 20 25 30
index

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

m
a
g
n
it

u
d
e
 o

f
si

n
g
u
la

r
v
a
lu

e

The 30 largest singular values of the snapshot matrix

• We compare the performance of POD approximation in two settings

1. a data mining setting

- we compare the POD approximation with
the full finite element solution for the case
in which all model inputs are the same as
those used to generate the snapshots

2. a prediction setting

- we again compare the POD approximation with
the full finite element solution for but now
model inputs are different from those used to
generate the snapshots

data mining prediction

At the final time T = 5

the difference between the velocity fields

of the full finite element solution and

the POD approximation with K = 6 POD basis

For the prediction setting and for 0 ≤ t ≤ 5, the energy

determined from the the full finite element solutions

and from the POD approximation of dimensions K = 2, 4, 6

data mining prediction

K error K error

2 0.035785 2 0.035869

3 0.021379 3 0.021437

4 0.013802 4 0.013910

5 0.009067 5 0.009073

6 0.004886 6 0.004969

The L2 relative error between

the full finite element solution

and the POD approximations of dimensions K = 2 to 6

POD for molecular dynamics

•We have a system of particles (point masses)

•MD calculations look deceptively simple

– one has a system of ODEs to solve

• However, MD calculations are expensive

– zillions of atoms are involved =⇒ huge ODE systems

– long-time calculations may be needed =⇒ huge number of time steps

– work per time step can be big

• Let
D = spatial dimension
Q = the number of particles

zq(t) denote the 3D vector of the position of particle q at time t

Z(t) denote the N = 3DQ vector of all the particle positions at time t

=⇒ Z(t) =


z1(t)
z2(t)

...

...
zQ−1(t)
zQ(t)



• Snapshots are determined by sampling at K time instants

– we then have the 3DQ×K snapshot matrix

=⇒ S =


z1(t1) z1(t2) z1(t3) . . . z1(tK)
z2(t1) z2(t2) z2(t3) . . . z1(tK)

...

...
zQ(t1) zQ(t2) zQ(t3) . . . zQ(tK)


– note that that the rows of S are samplings

of the trajectories of the particles

•We then define the POD basis based on the singular value decomposition S

• Toy computational example

– we consider a case with 100 particles in a 2-dimensional box

- the dimension N of the snapshot vectors is 200

– we choose PODs based on K = 100, 50, 25, and 10 POD basis functions

– we plot the potential energy and kinetic energies of the system vs. time
for the full MD solutions and for the POD approximations solutions

– we also plot, at a few time instants, the positions of the 100 particles as
determined by both the full MD and POD models

Potential energy of 100 atom system vs. time as determined from the full MD simulation (blue)

and ROM simulation (red); dimension of ROM basis is 100 (top left), 50 (top right), 25 (bottom

left), and 10 (bottom right)

Kinetic energy of 100 atom system vs. time as determined from the full MD simulation (blue)

and ROM simulation (red); dimension of ROM basis is 100 (top left), 50 (top right), 25 (bottom

left), and 10 (bottom right)

Position of the atoms at time steps 1, 250, and 500 (top to bottom)

Left: full MD simulation

Right: POD simulation with a POD basis of dimension K = 50

BUT, WHAT IS SWEPT UNDER THE RUG?
WHAT IS THE DIRTY LITTLE SECRET?

• First recall the reduced-order modeling mantra

– we are willing to pay the off-line cost incurred by obtaining
snapshots through the use of an expensive model M(U ;α)

because then

– we can amortize that cost over zillions of on-line
reduced-order model Mrom(Urom;α) solutions

• Thus, reduced-order modeling is wonderful

– once we have assembled the reduced order model Mrom(Urom;α)
we can indeed use it to obtain zillions of solutions at very little cost

– so what’s the problem?

• Here’s the problem

•Whereas

– the solution of a ROM Mrom(Urom;α) can be obtained

at a cost that depends only on the
dimension K of the reduced basis

so that
the cost does not depend on the
dimension N of the snapshots,
i.e., on the dimension of full-order
model M(U ;α)

– the simplest approach towards the construction of a ROMMrom(Urom;α)

incurs online costs that depend on the dimension
of the N of the snapshot vectors

• Of course, having on-line costs that depend on the dimension of the full-order
model M(U ;α) defeats the very purpose of doing reduced-order modeling

• It is then not a surprise that there has been considerable
efforts directed at getting around this bottleneck

– some of which have been successful for wide class of models

but

– all of which are limited in scope with regards to their
application to general classes of models

MULTILEVEL AND MULTIFIDELITY METHODS

SETTING

• Given inputs
– random N -vectors y

- each component yn, n = 1, . . . , N , is randomly chosen

– a mapping that transforms an N -vector y to a J-vector U (y)
- of course, the J-vector is then also a random vector

• Outputs
– step-one outputs: for each m = 1, . . . ,M ,

- we choose an input vector ym
and

- then determine the corresponding output J-vector Um(ym)

– step-two output: determine
- a scalar QoI (quantity of interest) that depends on {Um}Mm=1

• Setting
– obtaining Um from ym is very costly

– to obtain an accurate QoI, M has to be large
- we have to obtain many expensive Um

• To provide a concrete context, we consider

multifidelity methods in the context of uncertainty quantification (UQ)
and

a QoI of the form

QoIM(Φ) =

M∑
m=1

wmρ(ym)Φ(ym)

where Φ(y) = G
(
U (y)

)
and ρ(y) is a given PDF

- e.g., if G(U) = U =⇒ QoIM(Φ) ≈ E(U) = expected value of U

if G(U) =
(
U − E(U)

)2 ⇒ QoIM(Φ) ≈ V(U) = variance of U

– for example, we can have that QoIM(Φ) is a quadrature rule
approximation of a stochastic integral

QoIM(Φ) =

M∑
m=1

wmρ(ym)Φ(ym) ≈
∫

Γ

Φ(y)ρ(y)dy

where wm and and ym denote quadrature weights and points

Goal of multifidelity methods for UQ

•We have

– the high-fidelity model ⇐ the expensive and accurate
model we want to use

– a parameter sampling scheme

=⇒ high-fidelity model + sampling scheme
⇒ accurate but costs too much

•We also have some surrogate models ⇐ cheaper and less accurate models

=⇒ any surrogate model by itself + sampling scheme
⇒ costs less but is also less accurate

• Goal: find ways to

combine {high-fidelity model + surrogate models} + sampling scheme

⇒ so that total costs are lower but accuracy is the
same as that of the high-fidelity model

• Several choices for models and sampling schemes

Models of varying fidelity, all
depending on the parameters y Parameter sampling schemes

interpolants Monte Carlo
least-squares approximations quasi-Monte Carlo
reduced-order models Latin hypercube
simplified physics CVT
coarser grid sizes sparse grids
unconverged iterations
machine learning models
experimental data
.

– we will look at three choices

•Multilevel Monte Carlo

– truth model = expensive (e.g., a fine-grid discretization of a PDE)

– surrogates and sampling scheme used =⇒

Deterministic models of varying fidelity
all depending on the parameters y Parameter sampling schemes

interpolants Monte Carlo
least-squares approximations quasi-Monte Carlo
reduced-order models Latin hypercube
simplified physics CVT
coarser grids sparse grids
unconverged iterations
machine learning models
experimental data
.

– more generally, we can have sequence of parameters such that
as they increase, the models become cheaper but are less accurate

•Multilevel stochastic collocation

– truth model = expensive (e.g., a fine grid discretization of a PDE)

– surrogates and sampling scheme used =⇒

Deterministic models of varying fidelity
all depending on the parameters y Parameter sampling schemes

interpolants Monte Carlo
least-squares approximations quasi-Monte Carlo
reduced-order models Latin hypercube
simplified physics CVT
coarser grids sparse grids
unconverged iterations
machine learning models
experimental data
.

– more generally, we can have sequence of parameters such that
as they increase, the models become cheaper but are less accurate

– We also consider a more general mutifidelity method

- several different types of surrogates are used

- sampling via Monte Carlo

Monte Carlo methods

• Classical Monte Carlo (MC) methods determine the approximation to a QoI
by the simple random sampling and averaging formula

QoIMmc,hhf =
1

Mmc

Mmc∑
m=1

Ghhf (ym)

where

{ym}Mmc
m=1 ⇐ Mmc i.i.d. random points in Γ

Ghhf (ym) = G
((
F
(
Uhhf (ym)

))
⇐ depends on Uhhf (ym)

which is expensive to obtain
because hhf is small

– hhf is chosen so that, e.g.,

the “error”
∑M

m=1wmρ(ym)Φ(ym)−
∫

Γ Φ(y)ρ(y)dy= O(hαhf) = O(ε)

where ε is a prescribed tolerance

- so that smaller the tolerance, the greater the cost

– the number of samples Mmc is chosen so that the O(1/
√
Mmc) sampling

error is commensurate with the O(hαhf) error

– in this way the total error due to both sources is of O(ε)

– all

Mmc outputs {Uhf(ym))}Mmc
m=1

of the model corresponding to the

Mmc input sample points {ym}Mmc
m=1

are determined

using the hhf

•Multilevel Monte Carlo (MLMC) methods are designed
to obtain an approximation of the QoI that has the same
nominal accuracy ε but at less cost

Multilevel Monte Carlo methods

•MLMC methods make use of a hierarchy of grid sizes

hl =
hl−1

η
or hl =

h0

ηl
for l = 1, . . . , L

– h0 is a given coarse grid size

– η > 1 is usually chosen to be an integer (most often 2)

– L is chosen as hL = hhf so that there is hope that
the approach meets the same accuracy threshold ε

- the actual MLMC algorithm then ensures that this is a certainty

•MLMC methods also make use of a hierarchy of MC quadrature rules

Qmc
Ml

(Φ) =
1

Ml

Ml∑
ml=1

Φ(yml
) ≈

∫
Γ

Φ(y)ρ(y) dy for l = 0, 1, . . . , L

using the randomly sampled points {yml
}Ml
ml=1 in Γ

• At each level l and for any y ∈ Γ, we have the
approximate model output Uhl(y)

•We can then evaluate, for each level l and for any y ∈ Γ, the approximation

Ghl(y) = G
((
F
(
Uhl(y)

))
of the integrand G(y) in the QoI

• Then, for each level l, we have the spatial approximation of the QoI given
by

QoIhl =

∫
Γ

Ghl(y)ρ(y) d(y) for l = 0, . . . , L

• Obviously, the approximation QoIhL of the QoI on the finest spatial grid
hL = hhf can be written in the form of the telescoping sum

QoIhL = QoIh0
+

L∑
l=1

(
QoIhl − QoIhl−1

)

•We express this more economically as

QoIhL =

L∑
l=0

∆hl

where

∆h0 = QoIh0
and ∆hl = QoIhl − QoIhl−1

for l = 1, . . . , L

• For any level l, l = 1, . . . , L, we determine an MC approximation of ∆hl

using the level l MC quadrature rule Qmc
Ml

using the points {yml
}Ml
ml=1

i.e., we have

∆mc
Ml,hl

= Qmc
Ml

(
Ghl −Ghl−1

)
=

1

Ml

Ml∑
ml=1

(
Ghl(yml

)−Ghl−1
(yml

)
)
≈ ∆hl

• The MLMC approximation of the QoI is then given as

QoI ≈ QoIhL ≈ QoImlmchL
=

L∑
l=0

∆mc
Ml,hl

– note that we do not apply the MC method to any Ghl(y) for l > 0
but rather to the differences ∆hl(y) = Ghl(y)−Ghl−1

(y)

• The total number of samples taken is M =
∑L

l=0Ml

– note that because hl < hl−1

the cost of obtaining samples of ∆hl(y) increases as the level l increases

• How does one choose the number of samples Ml for each level l = 0, . . . , L?

– again, the aim is to have the error in the MLMC approximation to be less
than a given tolerance ε

– then, Ml, l = 0, . . . , L, are determined by minimizing the total sampling
cost subject to the constraint that the total sampling error is of O(ε)

• The result of the optimization process is that
the number of needed samples Ml decreases as the level l increases

• Thus, we see that

– Ml is large when hl is large
- one has to do relatively lots of sampling when the realizations

of the solution of the discretized PDE are relatively cheap

– Ml is small when hl is small
- one has to do relatively little sampling when the realizations

of the solution of the discretized PDE are relatively expensive

• Thus, there is a tradeoff in using MLMC compared to MC

– to obtain the same error for both methods

- the total number of samples
∑L

l=0Ml taken by MLMC may
be larger than the total number of samples used by MC

however

- all the MC samples are taken on the finest spatial grid

whereas

- some of the MLMC samples are taken on coarser spatial grids

•Who wins?

– does the MLMC method save over the MC?

- the answer is yes

•Why does MLMC win?

– the sampling error at the level l is proportional to σl/
√
Ml

σl is a measure of the standard deviation of ∆hl(y)

– the key is that the variances σ2
l of the differences

∆hl(y) = uhl(y)− uhl−1
(y) decrease as l increases

– thus

to equilibrate errors across all levels

one can use

a smaller Ml for larger l

Multilevel stochastic collocation methods

• One can keep everything we just presented for multilevel Monte Carlo
methods except for changing the sampling method

– e.g., we can use sparse grid (such as Smolyak) sampling
instead of Monte Carlo sampling

Relative total error ǫ
10

-7
10

-6
10

-5
10

-4
10

-3

C
o

m
p

u
ta

ti
o

n
a

l
c
o

s
t

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

MC
MLMC
SC (formula)
MLSC (formula)
SC (best)
MLSC (best)

Computational cost versus error ε

Optimal multimodel, multifidelity Monte Carlo method

Multifidelity ⇐ a plethora of surrogates;

implicit model hierarchy

Sampling ⇐ Monte Carlo

•


y ∈ Γ ⊂ RN ⇐= input vector of random inputs

Uhf(y) : Γ→ R ⇐= high-fidelity model output functional of interest

QoIhf ⇐= statistical information about Uhf(y)

Chf ⇐= cost to obtain Uhf(y) for any given y ∈ Γ

UQ

high-fidelity
model

ou
tp

ut
U

h
f

input y

QoIhf

•



y ∈ Γ ⊂ RN ⇐= vector of random inputs

⇓
high-fidelity model solves at sample points in Γ

⇓

Uhf(y) : Γ→ R ⇐= high-fidelity output functional of interest

⇓
use the high-fidelity model solves to approximate the QoI

⇓

QoIhf ⇐= statistical information about
the output of interest

– Chf ≥ 0 ⇐= cost to obtain Uhf for any given y ∈ Γ
≈ cost of the high-fidelity model solve

– Ghf(y) = G
(
Uhf(y)

)
⇐= integrand in QoIhf

• Then, the high-fidelity Monte Carlo estimator of the QoI is given by

QoIhfMhf
=

1

Mhf

Mhf∑
m=1

Uhf(ym) ≈ QoI

– {ym}
Mhf
m=1 are Mhf i.i.d. samples in Γ

– requires Mhf high-fidelity solves of the expensive model

– cost of doing the Mhf solves is MhfChf

•Mean-square error of the high-fidelity Monte Carlo estimator

error
(

QoIhfMhf

)
= E
[(

E[Uhf]−Uhf
)2
]

=
1

Mhf
V[Uhf]

• If Chf � 1, one looks for ways to reduce the cost of approximating the QoI

• In many situations, a surrogate model is available for which the corresponding
approximation U (sur)(y) is less expensive to obtain

– if C(sur) denotes the cost of obtaining U (sur)(y), we have

C(sur) � Chf

UQ

surrogate
model

ou
tp

ut
U

(s
u
r)

input y

QoI(sur)

• The construction of some surrogates,

e.g., interpolants, reduced-order models

require the solution of the expensive high-fidelity model

– the hope is that the high offline construction cost is amortized
over many subsequent online solves using the surrogate

• The Monte Carlo estimator of the QoI is now given by

QoI
(sur)
Msur

=
1

Msur

Msur∑
m=1

G(sur)(ym) =
1

Msur

Msur∑
m=1

G
(
U (sur)(ym)

)
– by using the surrogate instead of the high-fidelity model,

the cost of determining the approximation of the QoI
reduces from MhfChf to the much smaller MsurCsur

– unfortunately, less costly surrogates are also usually less accurate

• In many situations, several surrogates U (2)(y), . . . ,U (K)(y) for the output
of interest are available

– for k = 2, . . . , K

UQ

surrogate
model k

ou
tp

ut
U

(k
)

input y

QoI(k)

• For k = 2, . . . , K

– the cost Ck for obtaining U (k)(y) is often significantly less
than is the cost C1 = Chf for obtaining U (1)(y) = Uhf(y)

– QoI(k) can viewed as a “lower” fidelity “approximation” of QoI(1) = QoIhf

•Many types of surrogate models are possible

- interpolants, least-squares approximations

- projection-based reduced-order models

- simplified-physics models

· linearized PDEs
· averaged models (e.g., RANS)

- coarse-grid approximations

- stopping iterations early resulting in higher residuals

- machine-learning-based models

- experimental data

– these are very different from each other
with respect to cost, fidelity, and construction

accuracy

co
st

high-fidelity
model

surrogate
model

surrogate
model

surrogate
model

surrogate
model

• The hope is that somehow the cheaper surrogate models can be used

to speed up, without compromising accuracy,

the approximation of the QoI corresponding to the high-fidelity model

•Model management

– combine all model outputs of interest U (1), U (2), . . . ,U (K)

– use surrogates U (2), . . . ,U (K) for speedup

– use U (1) for accuracy

– balance the number of model evaluations
(number of samples) among models

– establish accuracy guarantees

• Because we want to be able to incorporate models of vastly different nature,
we generally do not have available estimates of the relative accuracy of those
models

– this is unlike the situation for MLMC and MLSC methods for which we
have explicit information about those differences because the different
models are generated solely by changing, e.g., the grid size

– thus, we do not assume we have any a priori information about
fidelities of any of any model relative to the other ones

UQ ??

surrogate
model 2

surrogate
model K

high-fidelity
model

ou
tp

ut
s
U

(1
) ,
..
.,
U

(K
) QoI(mfmc) =

cheaper QoI
approximation

input y

• Before going on to remove the ?? in the UQ box, we note that there are other
applications in which surrogates have been used to improve the efficiency of
a high-fidelity computation, including closed-loop settings

- optimization: corrections

- inference: delayed acceptance MCMC

optimization,
inference, · · ·

high-fidelity
model

ou
tp

ut
U

input
y

optimization,
inference, · · ·

surrogate
model

ou
tp

ut
U

input
y

optimization,
inference, · · ·

surrogate
model

surrogate
model

high-fidelity
model

ou
tp

ut
U

input
y

Multifidelity Monte Carlo method

• Setup

– y ∈ Γ ⇐ vector of random parameters with joint PDF ρ(y)

– U (1)(y) ⇐ output of high-fidelity model (“truth”)

– U (2)(y), . . . ,U (K)(y) ⇐ output of K − 1 surrogate models

– Ck ⇐ cost for obtaining U (k)(y) for given y ∈ Γ

– Mk ⇐ number of model evaluations of U (k)

with 0 < M1 ≤M2 ≤ · · · ≤MK

– QoI(1) = QoIhf ⇐ statistical information about the high-
fidelity output U (1)(y) = Uhf(y)

• Goal: estimate QoI(1) specifically ⇐ QoI(1) = E[G(1)(y)]

• Problem definition: given a computational budget B > 0

– derive estimator of QoI(1) = E[G(1)(y)] that uses surrogate models

– estimator has cost B

– estimator is unbiased with respect to QoI(1)

– estimator has lower MSE than the MC estimator also having cost B

• No assumptions about surrogate models

– use as many surrogate models of any type as one has available

– no a priori error bounds

– no a posteriori error estimators

– models do not have to form an explicit hierarchy through known error
bounds, e.g., as in MLMC or MLSC where such bounds are known in
terms of, e.g., the grid size

- the hierarchy is established implicitly through
correlations between models

•Model management questions

– how to combine models? ⇐ control variates

– how to balance model evaluations among them? ⇐ optimization

•Model sampling

– draw Mk (i.i.d.) realizations y1, . . . ,yMk
∈ Γ of y

– for k = 1, . . . , K

- evaluate U (k)(y) at the realizations y1, . . . ,yMk
to obtain

U (k)(y1), . . . ,U (k)(yMk
)

- construct the kth MC estimate QoI
(k)
Mk

= 1
Mk

∑Mk
m=1G

(k)(ym)

- reuse evaluations to estimate QoI
(k)
Mk−1

= 1
Mk−1

∑Mk−1
m=1 G

(k)(ym)

• The multifidelity Monte Carlo (MFMC) estimate for QoImfmc is then
defined as

QoI(mfmc) = QoI
(1)
M1

+

K∑
k=2

αk

(
QoI

(k)
Mk
− QoI

(k)
Mk−1

)
where {αk} are positive weights

• Properties of the MFMC estimator

– cost: ĈMK
=

K∑
k=1

MkCk

– the MFMC estimator is unbiased

• Given a computational budget B, one can analytically determine the

– optimal values {α∗k}k=2,...,K for the weights

– optimal values for {M ∗
k}k=1,...,K for the number

of samples one should take of the high-fidelity
model and for each of the K − 1 surrogates

such that

M ∗
1 ≥ 1

M ∗
k −M ∗

k−1 ≥ 0 for k = 2, . . . , K
K∑
k=1

M ∗
kCk =B

– M ∗
1 ≥ 1 ensures that the accuracy of MLMC estimator is not compromised

• Two competing features of a surrogate model come into play
during the optimization process, namely

- cost

- how well they are correlated with the high-fidelity model

– during the optimization process, the surrogates are re-ordered
so that the the number of samples Mk increase with k and
the costs decrease with k

– furthermore, the optimization process is capable of removing
surrogate models whose “high” costs and “poor” correlations
render them as being not useful

Numerical example: locally damaged plate in bending

• Input y ∈ R4: nominal thickness, load, damage
– uniformly distributed in [0.05, 0.1]× [1, 100]× [0, 0.2]× [0, 0.05]

• Output of interest G(y): maximum deflection of plate

• QoI: the expected value of G(y)

• Six models
– high-fidelity model: FEM, 300 DoFs

– reduced-order model: POD with 10 DoFs

– reduced-order model: POD with 5 DoFs

– reduced-order model: POD with 2 DoFs

– piecewise-linear interpolant with 256 points,
using data from high-fidelity model

– support vector machine with 256 points

spatial coordinate x1

0 0.2 0.4 0.6 0.8 1

sp
at

ia
l
co

or
d
in

at
e

x
2

1

0.8

0.6

0.4

0.2

 0

th
ic

kn
es

s

0.05

0.06

0.07

0.08

spatial coordinate x1

0 0.2 0.4 0.6 0.8 1

sp
at

ia
l
co

or
d
in

at
e

x
2

1

0.8

0.6

0.4

0.2

 0

th
ic

kn
es

s

0.05

0.06

0.07

0.08

thickness: no damage thickness: damage up to 20%

spatial coordinate x1

0 0.5 1

sp
at

ia
l
co

or
d
in

at
e

x
2

0

0.2

0.4

0.6

0.8

1

de
fle

ct
io

n

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

spatial coordinate x1

0 0.5 1

sp
at

ia
l
co

or
d
in

at
e

x
2

0

0.2

0.4

0.6

0.8

1

de
fle

ct
io

n

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

deflection: no damage deflection: damage up to 20%

• Variance and mean square error (MSE) for several model combinations

– largest improvement from one → two and two → three models

– adding additional models effects smaller improvement

– theoretical and computational MSEs match well

•MFMC provides for optimal load balancing on HPCs because we know a
priori how many times each model will be evaluated

• Distribution of number of samples (model evaluations) among models

one m
odel

two m
odels

three m
odels

six m
odels

sh
ar
e
of

sa
m
p
le
s[
%
]

10 -4

10 -2

10 0

10 2

100.00%

99.99%

1.95e-3%

99.69%

0.30%

1.35e-4%

98.29%

1.36%

0.31%

0.03%

2.11e-3%

3.47e-5%

high--delity f (1)

reduced f (2)

reduced f (4)

reduced f (5)

data f (3)

SVM f (6)

– MFMC distributes samples among models
depending on correlations and costs

– number of samples changes exponentially between models

– highest number of samples for data-fit and
SVM models (cost ratio C1/C6 ≈ 106)

Numerical nonlinear example: limit cycle oscillation (LCO)

• Non-adiabatic tubular reactor

• Arrhenius-type (exponential) nonlinear term

• Input: Damköhler number ∼ N (0.167, 0.03)

• Output of interest: LCO amplitude

• QoI: expected value of the output of interest

• Four models

– high-fidelity model: finite difference with 198 DoFs

– reduced-order model: POD with 10 DoFs

– reduced-order model: POD + DEIM with 10 DoFs

– interpolation with 10 points

variance MSE

• Speedup of four orders of magnitude with
high-fidelity + reduced order (POD) + interpolant

• Adding another reduced model (DEIM), only a slight improvement

• Agreement of variance (theoretical) and estimated MSE (numerical)

OPTIMAL CLUSTERING

K-MEANS & CENTROIDAL VORONOI TESSELATIONS

• Given a set of objects
clustering is the exercise of dividing the set into groups (= clusters)
based on some attributes possessed by the objects

– both the set of objects and their attributes can be very diverse

objects = people in Timbuktu attribute = age
objects = people in Timbuktu attribute = income
objects = people in Kalbarri attribute = age

objects = pixels in an image attribute = color
objects = pixels in an image attribute = intensity

objects = points on a map attribute = altitude
objects = points on a map attribute = distance from airports

• Example
– the dots are locations of fictitious existing Starbucks in a

fictitious square city which has a uniform population density

- each polygon contains all points (all people)

that are closer to the point in that polygon (a Starbucks location)

than to any other points (closer than to any other Starbucks)

- objects to be clustered: people in the city
clustering objective: group the population into clusters based on

how close they are to an existing Starbucks

- Starbucks wants to know this information because
they want to open another site

in doing so they want to lessen the distance
to a Starbucks for some of population

- e.g., they may choose to locate the new Starbucks at the red or blue location

••

– but suppose Amazon decides to enter into the coffee shop market

- they note that some people have to drive further
to their closest Starbucks than do other people

- because they are starting from scratch, they are
free to chose the locations of their coffee shops

- naturally, they decide to locate them so that the furthest
drive to a closest shop is roughly the same for each shop

- Amazon decides to distribute their coffee shops as in the figure

- how did Amazon determine this distribution of coffee shops?

• Amazon’s problem is an example of the generic optimal clustering task

– given a set of objects people in a city

given attributes possessed by the objects distance to the nearest coffee shop

given an objective minimize the furthest drive to a closest shop

cluster the objects so that the objective is met determine the locations

of the coffee shops so

that the objective is met

• This is an optimization problem
- one wants to minimize or maximize (depending on the setting) the objective

– problems of this nature arise in a very wide variety of settings

– e.g., the three slides that follow are all outcomes
of just such a type of optimization problem

- they three differ in that they have different sets of objects,
different attributes, and different objectives

“Uniform” hexagonal grid on the sphere

“Europe-by-night” satellite image (left) and its segmentation into three segments (right)

Stippled image

•What happens if we change the input information?

– e.g., suppose that the population is not distributed uniformly
but instead

the population density is higher in the middle of the city?

– naturally, there would be more Starbucks near the city center
than out in the suburbs

• Amazon’s objective may now be somewhat different

– now it wants to equilibrate the sum of the distances
that people have to travel to one of its coffee shops

– Amazon can again cast the problem of determining its
coffee shop locations as an optimization problem

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Existing Starbuck locations are closer to Amazon’s choice of locations

each other in high population areas

• There are surely many approaches known for solving
the optimization problems we have defined

– for discrete models

i.e., the objects are discrete (e.g., can be expressed in terms of vectors)

here, we consider only a k-means method

– for continuous models

e.g., the objects are functions (such as solutions of differential equations)

here, we consider centroidal Voronoi tesselations (CVTs)

– often, one discretizes the continuous model

- in which case one ends up with a discrete model
so one may be able to use k-means

– however, CVTs, as we will define them, when discretized
can result in variants of the k-means methods

•We define weighted1 k-means

– given a set of cardinality M of N -vectors S = {z1, z3 , · · · , zM}

– one subdivides S = {S1, S2, · · · , SK} into K
non-overlapping, covering subsets of cardinality Kk

- we have Sk ∩ Sk′ = ∅ if k′ 6= k

S1 ∪ S2 ∪ · · · ∪ SK = S

K =
∑K

k=1Kk

- of course, there are many ways to define such a subdivision

– also given are a set of positive weights {wk}Kk=1

1We will omit the adjective “weighted” from here on in

– the object of k-means clustering is, given a set of objects S = {zm}Mm=1

determine a subdivision S = {S1, S2, · · · , SK} such that2

K∑
k=1

∑
zm∈Sk

wm|zm − µk|2 is minimized over all possible subsets {Sk}Kk=1

where µk = 1
Kk

∑
zm∈Sk zm = the average of the Kk vectors zk ∈ Sk

• Later on, we discuss some approaches for solving the minimization problem

• k-means can has been generalized in many directions

– hierarchical k-means

– we can use a different distance metric instead of the Euclidean distance

e.g., instead of using | · |2, use | · · · | so that we have

a sum
∑K

k=1

∑
zm∈Sk wm|zm − µk| of absolute values

instead of a sum of squares

– · · · · · · · · ·

2| · | denotes the Euclidean distance

Voronoi tessellations

• Given a set S, divide it into K subsets S1, S2, . . . , SK such that

– no member of a subset Sk is a member of another subset Sj
the sets do not overlap

– every member of S belongs to one of the sets Sk
the union of the subsets is the original set

•We refer to the collection of such subsets {S1, S2, . . . , SK} as a
tessellation3 of S

• Of course, k-means provides an example of such a subdivision
in which the sets and subsets are discrete

• Here, in our discussion of tessellations, we are also concerned
with continuous sets and subsets

e.g., subsets of Rd consisting of an infinite number of points

3Please forgive the use of “tessellations” in this context; some may have a stricter definition of what constitutes a tessellation

• Voronoi tessellations

– given a set S which may consist of a finite4 or an
infinite number of objects

– given a set of K other objects Z = {z1, . . . ,zK}
which do not necessarily belong to S

– given a way to measure the distance between
objects in S and the objects in Z

– then, the Voronoi subset Vk is the set of objects in S that are
closer to a zk ∈ Z than to any of the other objects ∈ Z

– we refer to the collection of Voronoi subsets {V1, V2, . . . , VK}
as a Voronoi tessellation of S or Voronoi diagram of S

– we refer to the set of objects Z = {z1, . . . ,zK}
as the generators of the Voronoi tessellation

⇐= choosing the generators determines the tessellation

4If it is finite, we enter the realm, e.g., of having to cluster a finite number of vectors

z1

z2

V1

V2

perpendicular
bisector

S = the plane; Euclidean distance; K = 2

The Voronoi regions for two points z1 and z2 in the plane are the two regions
on either side of the perpendicular bisector of the line segment joining z1 and z2

S = a square; Euclidean distance; K = 10

Voronoi tessellation for 10 randomly selected points in a square

• Note that our notion of distance can be very general

- all we ask of a distance d(z, z′) between
object z and object z′ is that

d(z, z′) ≥ 0

d(z, z′) = d(z′, z)

d(z, z′) = 0 only if z and z′ are the same object

• A distance measure for a less familiar set of objects
colors in a color wheel

Points along the same radial line have the same hue

Points along the same circle have the same intensity

– how does one define a distance between two colors in the color wheel?

color

color

– if the distance between two colors is the smallest angle θ between them

- then, colors with the same hue (but different intensities)
would be judged to be the same

– if the distance between two colors is the difference in their radii |rb− ra|
- then points with the same intensity (but different hues)

would be judged to be the same

– if the distance between two colors is the
Euclidean distance in color space

- then, only if two points have the same angle and radius
will they be judged to be the same

• Centroid

– for example, given a region Vcontinuous in Euclidean space and a weight
function w(z) defined for z ∈ Vcontinuous, the centroid (or center of mass)
z∗ of V is given by

z∗ =

∫
Vcontinuous

zw(z) dz∫
Vcontinuous

w(z) dz

– for example, given a set of points Vdiscrete = {zm}Mm=1 in Euclidean space
and a weights {wm}Mm=1 defined for z ∈ V , the centroid (or center of
mass) z∗ of Vdiscrete is given by

z∗ =

∑
zm∈Vdiscrete

zmwm∑
zm∈Vdiscrete

wm

•We have now defined two different notions

clustering via Voronoi tessellations

and

centroids

– let’s bring the two notions together

Centroidal Voronoi tessellations5

• Given K points zk, k = 1, . . . , K, in a region
– we can construct the associated Voronoi sets

Vk for k = 1, . . . , K

where zk is the generator for Vk

• Given the Voronoi sets Vk, k = 1, . . . , K

– we can construct the corresponding centroids

z∗k for k = 1, . . . , K

• In general, the centroids of the Voronoi sets do not
coincide with the generators of the Voronoi sets

zk 6= z∗k for k = 1, . . . , K

5We have been discussing CVTs in terms of points, regions, Euclidean distances, etc.
for the most part, we will continue to do so

however, lots of what we present applies to more general objects, sets of objects, and/or different distance measures

• generators of the Voronoi regions
◦ centroids of the Voronoi regions

- the generators do not coincide
with the centroids

•We are interested in the very special cases
for which the generators and centroids do actually coincide

zk = z∗k for k = 1, . . . , K

Random: centroids and CVT: centroids and
generators do not coincide generators do coincide

– we refer to the tessellation associated with such a happenstance as a
centroidal Voronoi tessellation

• Centroidal Voronoi tessellations (CVTs) do not happen by accident

– in fact
the probability is zero that a randomly
selected set of points {zk}Kk=1 has the CVT property

that is
that they are at the same time

the generators of a Voronoi tessellation
and

the centroids of the Voronoi regions

– therefore, CVTs must be constructed by some method

• Note that, in general, one does not have uniqueness

•We again note that it one is dealing with a finite set of objects, then,
for the most part, CVT reduces to k-means

Two two-point centroidal Voronoi tessellations of a square

The three regular tessellations of the plane are CVTs

• Example: CVTs in the square

- uniform weight 256 generators

Random sampling Centroidal Voronoi

- weight function with peak in middle 256 generators

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Random sampling Centroidal Voronoi

- weight function with peak at a corner 256 generators

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Random sampling Centroidal Voronoi

• CVTs of the square for other metrics

CVT for the `1 metric

CVT for the `20 metric (approximating the `∞ metric)

CVT for the triangle metric

• CVTs for generalized generators
e.g., generators are straight line segments

Voronoi regions have points that are
closer to one line than to any other line

not a CVT is a CVT

Voronoi tesselations with line generators

not a CVT is a CVT

Can have both point and line generators

• Clearly, even for uniform weights and the Euclidean metric
there are many possible CVT’s for a square

– for example, here are three 16-point CVT’s of the square

– which CVT will the CVT construction algorithms give you?

- actually it is none of these if you use the Euclidean metric

– even if you start from a CVT, if you apply any CVT construction process,
you will end up with a CVT that is as hexagonal as possible

- stages in a CVT iterative construction algorithm =⇒

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

initial

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

final

Centroidal Voronoi tessellations as minimizers

• Given
a domain Ω

a positive integer K

a density function w(·) defined on Ω

– let
{zk}Kk=1 denote any set of K points belonging to Ω

{Vk}Kk=1 denote any tessellation of Ω into K regions

- the points do not have be generators of a Voronoi tessellation

- the tessellation does not have to be a Voronoi one
– let

Fcvt
(
{zk, Vk}Kk=1

)
=

K∑
k=1

∫
z∈Vk

w(z)|z − zk|2dz

• Then, a necessary condition for F to be minimized is that
{Vk}Kk=1 and {zk}Kk=1 form a centroidal Voronoi tessellation of Ω

– if Ω is bounded, then F has a global minimizer

– assume that w(·) is positive except on a set of measure zero in Ω

- then zk 6= zk′ for k 6= k′

– for general metrics

- existence is proved by the compactness of the Voronoi regions

- uniqueness can also be proved under some assumptions
e.g., convexity of the metric

– there are many additional results available for the discrete (k-means) case

- many of these are in the nature of limiting results
as the number of generator increases

• All that was written concerning the functional FCV T holds
for the discrete k-means functional

Fk−means
(
{zk, Sk}Kk=1

)
=

K∑
k=1

∑
zm∈Sk

wm|zm − zk|2dz

Local uniformity of centroidal Voronoi tessellations

• Gersho’s conjecture (proven in 2D under assumptions)

– for any weight function, as the number of points increases
the distribution of CVT points becomes locally uniform

- this means that if
one looks at small enough subdomain
containing a large enough number of points

a CVT point distribution will look uniform
regardless of how nonuniform it is globally

– locally in 2D, CVT Voronoi regions tend to be congruent regular hexagons

– compare the uniformity of nonuniform MC and nonuniform CVT
in a region having a high density of points

– in higher dimensions, the basic cell of a CVT is not known

- in 3D, computational studies indicate that it is a
truncated octahedron (one of the Platonic solids)

ALGORITHMS FOR CONSTRUCTING CVTs

Lloyd’s method – iterating between generators and centroids

0. start with some initial set of K points {zk}Kk=1 in a region Ω

1. construct the Voronoi tessellation {Vk}Kk=1 of Ω
with the points {zk}Kk=1 being the generators

2. construct the centroids {z∗k}Kk=1of the Voronoi
regions {Vk}Kk=1 found in Step 1

3. set the centroids found in Step 2 to be a new set of generators

4. go back to Step 1, or, if you are happy with what you have, quit

- note that in steps 1 and 2
one has to explicitly construct the Voronoi tessellations
one has to explicitly determine centroids

software is available to do both tasks

McQueen’s method – concurrent random sampling and weighted averaging

• Because McQueen’s method involves sampling points

it is actually an implementation of
the weighted k-means method

- this observation is even more relevant for the
modified McQueen’s method we consider later

– in the continuous setting

- McQueen’s method does not require the explicit
construction of Voronoi tessellations or of centroids

– in the discrete setting

- McQueen’s method provides an exact k-means clustering

• Start with some initial set of K points {zk}Kk=1 (K = 4 in the sketch)

z1 z2

z4z3

• Sample another point w

• Determine which of the zk’s is closest to w (it is z2 in the sketch)

z1 z2

z4z3

w

• Find the average of w and the zk closest to it

z1 z2

z4z3

w

average of w and z2

• Replace the zk by the average point

z1

z2

z4z3

the new z2 is the average

of w and the old z2

• Continue the process, that is,

– sample points w

– find the closest zk
– average w and that zk
– replace that zk by the average

except

– we keep track of how many times a point zk has been previously updated

– when we do the averaging, we weight the old point according
to the number of times it has been previously updated

• For example, suppose z2 had already been updated 12 times
(counting the initial positions as the first update); then

– instead of the new z2 ←
w + z2

2

– we have the new z2 ←
w + 12z2

13

z1 z2

z4z3

w

since z2 had previously updated,

the new z2 is the weighted

average of w and the old z2

• As was already noted
McQueen’s method does not require the
explicit construction of Voronoi sets or centroids

– despite this
the K points produced by McQueen’s method
converge towards the generators of a CVT

• The convergence of McQueen’s method is very slow

- it takes many steps (millions) to get
close to true CVT generating points

– the problem with McQueen’s method is that it
samples only one point at time before it averages

Modified McQueen’s method – random sampling and averaging

• Before averaging, sample lots of points (zillions) and then
group (cluster) them according to which is the nearest zk

z1 z2

z4z3

sampled points nearest z1

sampled points nearest z2

sampled points nearest z3

sampled points nearest z4

• Find the average of each of the clusters

z1 z2

z4z3

average of points nearest z1

average of points nearest z2

average of points nearest z3

average of points nearest z4

• The new zk’s are weighted averages of the old zk’s
and the corresponding cluster averages

z1 z2

z4z3

• The modified McQueen is great for parallelization
- it exhibits near-perfect scalability

0 10 20
0

5

10

15

S
p

e
e

d
u

p

Number of Processors
0 10 20

0

5

10

15

Number of Processors
0 10 20

0

5

10

15

Number of Processors

Speedup of a parallel implementation of the modified McQueen’s method
for three different weight functions that cause different refinements

– there is available a two parameter family of effective,
probabilistic methods for generating CVT’s in general
regions and with general weight distributions

Functional minimization

• CVTs can be constructed by directly
minimizing the functional Fcvt

just as

k-means clustering can be constructed by
directly minimizing the functional Fk−means

– for example, one can use Newton’s method for this purpose

Generaliztions of CVTs (a partial list)
in every instance, can replace “CVT” by “weighted k-means”

• Constrained CVT’s for placing some or all the points on a surface

• Constrained CVT’s for fixing the position of some points

• CVT’s for other metrics

- e.g., for anisotropic point distributions one can use anisotropic metrics

• CVT’s for other types of generators

• Constrained CVT’s so that some of the final generators
are located on the boundary of the domain

- CVT’s hate boundaries; left on their own, no CVT generator would be

located on the boundary

- even if initially one places some generators on the boundary, they leave

the boundary in the first step of any of the algorithms

- something has to be done to force some generators to stay on the boundary

such as not letting boundary generator participate in the construction process

or, even better, constraining boundary generators to slide along the boundary

APPLICATIONS OF
WEIGHTED k-MEANS and/or CVTs (a partial list)

• optimal quadrature rules

• covolume and finite difference methods for PDE’s

• optimal representation, quantization, and clustering

• finite volume methods for PDE’s

• optimal placement of sensors and actuators

• surrogate optimization

• particle methods

• stippling

• visualization of software metrics

• melodic structure improvement

• mosaic effects for images

• point distributions and grid generation on surfaces

• meshfree methods

We have already considered one application

• hypercube point sampling
⇐==⇒ the ??? case in the discussion of hypercube point sampling

We briefly consider these applications

• optimal distribution of resources

• cell division

• territorial behavior of animals

• data compression

• image segmentation and edge detection

• multichannel reconstruction of images

• reduced-order modeling

• grid generation

· · · · · · · · · · · · · · · and there are more

Optimal distribution of resources

•What is the optimal placement of mailboxes in a city?

• The optimization problem
– a user will use the mailbox nearest to their home

– the cost (to the single user) of using a mailbox is proportional
to the distance from the user’s home to the mailbox

– the total cost over a whole city of users is measured by the average
distance to the nearest mailbox of all users in the city

– the optimal placement of mailboxes is defined to be the one
that minimizes the total cost

• The optimal placement of the mail boxes is at the generators of
a centroidal Voronoi tessellation of the city

– you have to use a different metric because if you use
the Euclidean metric, people will be walking on
other people’s lawns and through other people’s houses

Actual distribution of mailboxes Population density
in a district of Tokyo in the district

CVT distribution of mailboxes

Cell division

• There are many examples of cells that are polygonal
- often they can be identified with a Voronoi tessellation,

indeed, a centroidal Voronoi tessellation

– this is especially evident in monolayered or columnar cells
- e.g., as in the early development of a starfish (Asteria pectinifera)

• Cell division

– start with a configuration of cells that, by observation, form a
Voronoi tessellation (this is very commonly the case)

– after the cells divide, what is the shape of the new
cell arrangement?

– it is observed that the new cell arrangement is closely
approximated by a centroidal Voronoi tessellation

• Actual cellular patterns of a starfish embryo before (left) and after (right)
cell division

the white circles on the left are the parent cells that divide
into the four daughter cells on the right indicated by white dots

• Left: Actual cellular patterns before cell division traced from photograph.

• Right: CVT-based cellular patterns after two parent cell generators are al-
lowed to separate. The CVT-based cellular pattern can be shown to be close
to the actual cellular pattern after cell division

Territorial behavior of animals

•Male mouthbreeder fish – Tilapia mossambica

– fishes dig nesting pits in sandy bottoms

– they adjust the centers and boundaries of the pits so that the
final configuration of territories is a centroidal Voronoi tessellation

– A top view photograph, using a polarizing filter, of the territories of the
male Tilapia mossambica

– A superposition of the actual boundaries of the
territories and a CVT of the nests

Image processing

• Compression

– each pixel in a image has a specific color

– each color is a combination of basic (primary or RGB or CMY) colors

– there are zillions of different colors in a given image

– one would like to approximate the image using just a few colors

- note that the compression is not due to reducing
the number of pixels

but is due to amount of information about the
colors at each pixel

– question: how does one choose the few colors that are
to be used to represent the image?

– k-means of the image in color space does a very good job

– original image with 256 shades of gray

– k-means approximate image using 64 shades of gray

– k-means approximate image using 32 shades of gray

– k-means approximate image using 16 shades of gray

– k-means approximate image using 4 shades of gray

– from left to right and top to bottom: original image containing 1434
different colors and k-means-approximate images containing 4, 8, 16, 32,
and 64 colors, respectively

– elbowing effect

The k-means energy of k-means approximate images
for two images vs. the number of replacement colors

- the k-means energy vs. number of generators
(the reduced set of colors) decreases rapidly at first

but then, as
the number of generators increase, reductions
in the energy plateau, i.e., become less pronounced

- once the plateau is reached,
adding more generators does not help much

so that
the elbowing effect can be used to determine the
number of generators that should be used

• Segmentation and edge detection

– image segmentation is the division of an image into two or more
segments such that each segment has pixels in the image that
share a common attribute, e.g., hue or intensity

– edge detection is the task of finding the boundaries
between different segments in an image

– the segmentation is not done on the physical image, but in the color space

- so that points with the same color can be
in totally disjoint in physical space
but are clustered together in color space

– k-means in color space does a very good job at segmenting
images and detecting edges

– k-means-based segmentation and edge detection into two segments

- left: the original fuzzy image

- middle: k-means segmentation into two segments

- right: the edges of the segments

– k-means-based segmentation and edge detection of a bone tissue image
(top-left) into two (top-right) and three (bottom) segments

– top left image: original “Europe-by-night” image

– other images: k-means segmentation into 2, 3, and 4 segments

• Restoration

– suppose one has in hand
several versions of a image
none of which contains all the information

necessary to recover the complete image

– how can the information contained in the different versions
be combined so as to recover the whole image?

– this is a natural task for k-means-based image processing

– top: three noisy and incomplete versions of the same image

– bottom: k-means-based reconstructed image

k-means reduced-order modeling

• Given
a set of M snapshots N -vectors S = {z1, z2, · · · zM}
a set of weights {wm}Mm=1

an integer 1 < K ≤M

use k-means clustering to partition the snapshot
set S = {S1, S2, · · · SK} into K clusters

– i.e., determine the partition S = {S1, S2, · · · SK} by

minimizing
K∑
k=1

∑
zm∈Sk

|zm − µk|2 over all possible subsets {Sk}Kk=1

where µk =
1

Kk

∑
zm∈Sk

zm = the average of the Kk vectors zk ∈ Sk

• Then, the k-means reduced basis having cardinality K ≤M is simply

the set of average vectors {µ1, µ2, · · · µK}

A comparison of POD and k-means reduced-order modeling

Generating snapshots and reduced-order bases

• The problem setting is flow in a T-shaped domain
with a fluid inlet and outlet as given in the figure

Inlet Γi Outlet Γo

– the parabolic inflow velocity is given uinlet =

(
100 γ(t) (1− y) (0.5− y)

0

)
- the input parameter function γ(t) chosen to generate

the snapshot sets is a step function in time

• The Navier-Stokes equations are discretized in space and time

– full order expensive simulations are sampled
in time to generate M = 500 snapshots

– the snapshot vectors have dimension N > 21000

– the snapshots are used to determine POD and k-means bases

The first 4 POD basis

The first 4 k-means basis

The next 4 POD basis

The next 4 k-means basis

• Interestingly, the POD and k-means bases look very different

• The singular values of the snapshot matrix decrease rapidly

1 2.7234 5 0.0866 9 0.0077 13 0.0014
2 0.6704 6 0.0349 10 0.0060 14 0.0010
3 0.2612 7 0.0168 11 0.0029 15 0.0008
4 0.1197 8 0.0151 12 0.0023 16 0.0004

The first 16 singular values of the snapshot matrix

– this indicates that for the problem we consider here

- a “small-dimensional” POD basis can capture most
of the information contained in the snapshot set

– this benevelent behavior cannot, of course, be universal
but it has been observed in many other examples

• The “k-means energy” (which is the functional Fk−means)
decays rapidly as the size of the k-means basis increases

– the elbowing effect is evident

4 9837 8 2879 12 1442 16 833
5 6250 9 2254 13 1241 17 751
6 4857 10 1906 14 1041 18 669
7 3524 11 1697 15 936 19 626

20 584
4 6 8 10 12 14 16 18 20

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

The k-means energy vs. the dimension K of the k-means reduced basis

– for very few basis functions, increasing the number of
basis functions effects a large decrease in the energy

– but as the number of basis functions increase,
the reduction in the energy becomes much smaller

– this is an indication that the snapshot set for our problem clusters well
- again, this phenomenon has been often observed but is not universal

Performance of the reduced-basis methods

• Seven choices for the inlet input function γ(t) are used
to test the POD and k-means reduced-order model

– all seven are different from the γ(t) used to generate the snapshots

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1

2

3

4

5

6

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1

2

3

4

5

6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

2

3

4

5

6

7

8

9

10

1. hat function 4. high-frequency sinusoid 6. hat function

2. low-frequency sinusoid 5. “general” function 7. “general” function

3. middle-frequency sinusoid

– we test the performance of the two reduced-order models in two settings

- interpolatory setting
choices 1 through 5 feature

inputs γ(t) than are different from
those used to generate snapshots

but
ROM simulations are over the same time
interval as that used to generate snapshots

- extrapolatory setting
choices 6 and 7 feature

inputs γ(t) that are also different from
those used to generate snapshots

but now
ROM simulations are over a time interval that is
twice as long as that used to generate snapshots

– we plot the error vs. time of the two ROM solutions
when compared to solutions of the expensive model

- here, the error is the difference between
ROM and full-order simulations

– interpolatory setting

0 0.01 0.02 0.03 0.04 0.05 0.06

1

2

3

4

5

6

7

8

9

10
x 10

−4

12 POD basis

16 POD basis

12 CVT basis

16 CVT basis

0 0.01 0.02 0.03 0.04 0.05 0.06

0.5

1

1.5

2

2.5
x 10

−4

12 POD basis

16 POD basis

12 CVT basis

16 CVT basis

Test 1 Test 2

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

12 POD basis

16 POD basis

12 CVT basis

16 CVT basis

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.5

1

1.5

2

2.5
x 10

−3

12 POD basis

16 POD basis

12 CVT basis

16 CVT basis

Test 3 Test 4

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

12 POD basis

16 POD basis

12 CVT basis

16 CVT basis

Test 5

– extrapolatory setting

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

8 POD basis

12 POD basis

8 CVT basis

12 CVT basis

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

8 POD basis

12 POD basis

8 CVT basis

12 CVT basis

Test 6 Test 7

K POD k-means

4 6.125e-02 5.264e-02
5 3.255e-02 1.012e-01
6 2.192e-02 2.976e-02
7 2.097e-02 4.038e-02
8 1.914e-02 2.147e-02

10 1.830e-02 1.857e-02
12 1.787e-02 1.761e-02
16 1.736e-02 1.721e-02

For case 5, the error incurred by the POD and k-means reduced-order
models vs. the cardinality K of the reduced bases space

• One observes that, at least for the T-cell example we consider

very low-dimensional POD and k-means ROMs are both quite
effective at approximating expensive full-order solutions

– even for bases of cardinality less than 10, the “error” is small

– one also observes that if the cardinality K of the basis is
about 12, further increases in that cardinality effects very
little improvement in the performance of the two ROMs

– this is an indication that the two ROMs of cardinality about
12 already effectively capture all of the information contained in
the snapshot set that, in our example, has cardinality 500

– this conclusion can also be inferred from the table in
which the space-time error vs. K is listed

- we see that there is almost no reduction in
the error if K is increased from 12 to 16

•We also observe that comparing the first 5 cases with the last two that

– the errors for the extrapolatory cases are not much
worse that those for the interpolatory cases

– note, however, that for the extrapolatory cases

- there is some deterioration evident in the performance
of the ROMs near the end of the extrapolated
simulation for the longer time interval

– in more general situations

- it is possible for extrapolatory ROMs to produce substantially
worse results compared to interpolatory ROMs

- the cause of this is that the snapshot set itself does
not contain sufficient information to accurately
represent the solution in the extrapolatory regime

i.e., some snapshots should be sampled at later times

POD vs. k-means

• For the test problem we consider and as far as accuracy is concerned
there is very little to choose between POD
and k-means based ROMs

to approximate full expensive solutions

– the only cost difference between the two approaches are the
costs incurred to determine a reduced basis once a snapshot
set has been determined

– any cost difference between the two approaches is miniscule
compared to the cost of generating the snapshot set

- for the example problem we present here
the cost of determining a reduced-order basis
from the snapshot set is less than one-half of
one percent of the cost of determining the
snapshot set itself

• POD does have one advantage over k-means, namely
that the POD bases are nested

i.e., a POD basis contains all the
POD bases of lower cardinality

whereas k-means bases are not nested

– if we want to enlarge the POD basis
one just adds column of the matrix U
appearing in the SVD of the snapshot set

– if we want to enlarge the k-means basis
one has to start the construction of the
k-means basis from the very beginning

– again, this advantage is not huge because
the costs of determining an new enlarged
k-means basis (should one be needed) from
the snapshot set is very small compared to
the cost of determining the snapshot set itself

POD + k-means

• Reduced-order models
that involve both POD + k-means

can be easily defined and
can result in a better reduced-order model

than either one of its components

– for example

- one can first do a coarse k-means clustering of the snapshots
and then

do a separate POD within each k-means cluster

– POD + k-means ROMs could be advantageous in situations where
the solution behavior in one cluster is very different from that others

- then, doing a POD ROM specialized to
each cluster may be advantageous

Point sampling in general domains

Examples of the versatility of CVT point sampling

Uniform CVT point distributions in “general” domains

Non-uniform CVT point distributions

CVTs with points on the boundary

CVT-based grid generation

• Voronoi tessellations can be used as grids for many purposes
such as histograms and notably for the discretization of PDEs

– the figure is an example a CVT grid in actual use
in practice for finite-volume ocean simulations

– however, CVT grids are most often used in their dual form

Delaunay triangulations

• There are several ways to define Delaunay grids including
several that do not rely on Voronoi tessellations

- here, however, we use the Voronoi tessellation approach

• Given a Voronoi tessellation, the associated Delaunay grid is defined
by connecting Voronoi generators that share a common face

– in two dimensions, they share a common edge

the red grid denotes a Voronoi tessellation
corresponding to the red dots

the black grid denotes the corresponding
Delaunay triangulation

• Delaunay grids are made up of simplices

- triangles in two dimensions, tetrahedra in three dimensions,

• It is not surprising that the high quality of centroidal
Voronoi tessellations induce high quality Delaunay grids

Left: Delaunay grids corresponding to
Voronoi tessellations associated with
uniformly and non-uniformly
distributed random points

Right: Delaunay grids corresponding
to uniform and non-uniform CVTs

we refer to Delaunay grids
corresponding to a CVT
as CVDT grids

– there are many software packages available for the construction of Delaunay grids

Comparison of CVDT grids with other grid-generation software

eyeball norm comparisons

TRIANGLE DISTMESH MESHGEN

VTM CVDT1 CVDT2

quantitative comparisons of different grids using several quality measures

triangle distmesh meshgen tvm cvdt1 cvdt2

no. points 242 240 240 240 240 240
no. triangles 412 385 385 381 381 393

h× 102 8.61 7.32 7.30 7.78 7.16 7.37
χ 2.25 1.75 1.85 2.02 1.80 1.72

τ × 104 8.83 9.25 9.19 8.98 8.94 8.47
d× 107 3.36 1.53 1.09 0.94 0.72 1.72
α× 103 6.94 6.48 6.15 7.49 6.55 6.00
β × 102 3.32 2.82 3.09 3.33 2.90 2.56

q 2.00 1.37 1.30 1.69 1.39 1.37
p× 102 11.60 3.60 4.60 6.00 4.30 4.20

red best blue worst

Example of CVDT grids

Satellite data for the kinetic energy distribution in the North Atlantic
Note that the boundary is quite complicated

• The grid is refined based on two goals

- where the kinetic energy is relatively large (red and yellow areas)

- to accurately resolve the boundary

Left: a CVDT of the North Atlantic Right: a zooomed in portion of that CVDT

Measured ice thickness of Greenland; note that the boundary is quite complicated

• The grid is refined based on two goals

- where the ice thickness is relatively small (light blue areas)

- to resolve the boundary

A CVDT of the Greenland ice sheet A zoomed in portion of that CVDT

RANDOM FIELDS

• A random field is a function η(x, t;ω) defined for

x belonging to a spatial domain D
and for

t belonging to a time interval [0, T]

whose value at any point x ∈ D and at any time t ∈ [0, T]

is drawn at random from a given PDF ρ(ω)

– more general definitions of random fields (i.e., definitions that involve
variables other than space-time ones) are, of course, also possible

• Random fields are often used as inputs into a model

M
(
U(x, t;ω); η(x, t;ω), g(x, t)

)
= 0

where here U(x, t;ω) denotes the model solution
g(x, t) denotes an input that does not depend on a sample ω

WHITE NOISE – UNCORRELATED RANDOM FIELDS

• The value of a white noise random field ηwhite(x, t;ω) at every point in space
and at every instant in time is independently chosen according to a Gaussian
PDF

• The inclusion of ω in the argument of the random field indicates that

- the values of the random field at any point x and any time
instant t are determined by first sampling ω according to
a one-dimensional PDF ρg(ω)

here this is the standard normal distribution N (0, 1)

- then adjusting the sample value taken for the point x and time
instant t so that it corresponds to a sample from the normal
distribution having given mean µwhite(x, t) and variance σ2

white(x, t)

- as a result, the sample value used is given by

µwhite(x, t) + σwhite(x, t)ω

- often, σ2
white is chosen to be constant

• The covariance function1 corresponding to a white noise random field
ηwhite(x, t;ω) is given by

Covwhite(x, t,x
′, t′) = σwhite(x, t)σwhite(x

′, t′)δ(x− x′)δ(t− t′)
where δ(·) denotes the Dirac delta function

– thus, the variance Vwhite(x, t) of white noise is infinite2 so that white
noise cannot describe a real process

– notwithstanding this observation, white noise random fields are a very
common random input used, e.g., as inputs in the PDE setting

- later we comment on why numerical simulations involving
white noise inputs do not “see” this infinity

1The mean of a random field η(x, t;ω) is defined by µη(x, t) = E
[
(η(x, t; ·)

]
, where E denotes the expectation

with respect to the PDF ρg(ω). Its covariance is given by

Covη(x, t;x
′, t′) = E

[(
η(x, t; ·)− µη(x, t)

)(
η(x′, t′; ·)− µη(x′, t′)

)]
= E

[
η(x, t; ·)

(
η(x′, t′; ·)

]
−
(
ηwhite(x, t;ω)

)2
and its variance by Vη(x, t) = Covη(x, t;x, t)

2One should not confuse the variance of the white noise field η(x, t; ·), which is infinite, with the variance
σ2white(x, t) of the Gaussian PDF from which sample values of the random field are drawn, which is finite

• Obviously, in any computer simulation, one cannot sample the Gaussian
distribution at every point of the spatial domain and at every instant of time
so that white noise is replaced by discretized white noise

– among the means available for discretizing white noise in the PDE setting,
grid-based methods are the most popular

– truncated expansions in terms of Hermite polynomials are another means
used to discretized white noise; we don’t have time to discuss this approach

Grid-based methods for discretizing white noise

• For simplicity, we consider time-independent white noise random fields

• To define a single realization of grid-based discretized white noise

– we first subdivide the spatial domain D into N non-overlapping,
covering subdomains {Dn}Nn=1

– then, for each n = 1, . . . , N , we let

|Dn| denote the volume of the subdomain Dn
χn(x) denote the characteristic (or indicator) function

corresponding to the subdomain Dn
yn(ω) denotes an N (0, 1) i.i.d. random number

so that the value of yn(ω) is independent of the value of yn′(ω) for all
n′ 6= n but both yn(ω) and yn′(ω) are drawn from the same PDF ρg(ω)

• Then, for some constants {an}Nn=1, we seek an approximation of the white
noise random field ηwhite(x;ω) of the form3

ηNwhite(x;y) = µwhite(x) +

N∑
n=1

anχn(x)yn(ω) ≈ ηwhite(x;ω)

where y ∈ RN denotes the vector having components yn, n = 1, . . . , N

– note that this is a piecewise constant approximation (with respect to
the subdivision {Dn}Nn=1 of the spatial domain D) of the random field
ηwhite(x;ω)− µwhite(x)

• The covariance of the discrete random field ηNwhite(x;ω) is given by

CovNwhite(x,x
′) =

{
a2
n if both x,x′ ∈ Dn
0 otherwise

3Usually the mean function µwhite(x) is also approximated by a function µNwhite(x) defined with respect to the
grid. For example, one could use the piecewise constant approximation µNwhite(x) =

∑N
n=1 µ(x∗n)χn(x), where

x∗n denotes the centroid of the subdomain Dn.

• Because pointwise values of the covariance

Covwhite(x,x
′) = σwhite(x)σwhite(x

′)δ(x− x′)

of a spatially dependent white noise random field are not defined, we deter-
mine, for n = 1, . . . , N , the coefficients an by matching the averages over
Dn of the covariance Covwhite(x,x

′) and its approximation CovNwhite(x,x
′)

– in this manner we obtain that

a2
n =

1

|Dn|2

∫
Dn
σ2
white(x) dx

– approximating σwhite(x) for x ∈ Dn by its value at the centroid x∗n of

Dn, we then have an = σwhite(x
∗
n)√

|Dn|

– so that the discretized white noise random field is given by

ηNwhite(x;y) = µwhite(x) +

N∑
n=1

σwhite(x
∗
n)√

|Dn|
χn(x)yn(ω) ≈ ηwhite(x;ω)

• Thus, via discretization, white noise has been reduced to the case of N
random parameters.

• If σwhite(x) = σwhite = constant, as is often the case, then

ηNwhite(x;y) = µwhite(x) + σwhite

N∑
n=1

1√
|Dn|

χn(x)yn(ω) ≈ ηwhite(x;ω)

• In one dimension, for constant variance σ2
white and zero expected value and

for a uniform grid of size h, we have the well-known formula

ηNwhite(x;y) =
σwhite√
h

N∑
n=1

χn(x)yn(ω) ≈ ηwhite(x;ω)

for approximating a white noise random field

•We have constructed an approximate white noise field based on sampling in
subdomains

– this is convenient for finite element spatial discretization schemes

– for other spatial discretization schemes, e.g., finite difference methods, it
may be more convenient to sample at grid points; the construction process
we have discussed is easily amended to this case

• It is important to note that
the variance of the discretized white noise field is finite

– in fact, we have, for n = 1, . . . , N ,

VN
white(x) = CovNwhite(x;x) =

σ2
white(x

∗
n)

|Dn|
x ∈ Dn

which clearly is finite for all x ∈ D
– this is one reason why, in simulations, the fact that the variance of a white

noise random field is infinite does not cause codes to fail

– however, note also that as the spatial grid size goes to zero, i.e., as
|Dn| → 0, that the variance of discretized white noise goes to infinity

• Time-dependent white noise fields can be treated in an entirely
similar manner

Realizations of grid-based discretized white noise over the same time interval
in a square subdivided into 2, 8, 32, 72, 238, 242, 338, and 512 triangles

Independent random constants are sampled for each triangle

Realizations of grid-based discretized white noise over two different time
intervals in a square subdivided into the same number of triangles

•What about non-Gaussian white noise fields?

– it seems an easy matter to sample according to a different PDF instead
of the normal distribution; indeed, this is done in practice

– however, there are issues that arise when doing so, not the least of which
is that the Gaussian PDF is the only one which is completely defined by
its mean and variance

COLORED NOISE – CORRELATED RANDOM FIELDS

• Suppose that you are standing next to a friend and it starts raining hard
where you are standing

– if rainfall were a white noise random field, then, it is possible that it is not
raining, or perhaps just sprinkling, over the friend standing next to you;
in fact, it may raining even harder over your friend

– of course, in reality, it is highly unlikely that it is not raining, or even
sprinkling, over you friend

– instead, it is highly likely that it is indeed raining hard over your friend
because rainfall is (a well) correlated random field

• A correlated random fields η(x, t;ω) is such that at each point x in a spatial
domain D and at each instant t in a time interval [t0, t1], the value of η is
determined by a random variable ω whose values are drawn from a given
probability density function ρ(ω)

– however, unlike the white noise case, these draws are not independent

⇐= the covariance function of a correlated random field η(x, t;ω)
does not reduce to delta functions

• In rare cases, a formula for the random field is “known”

– more often, only the mean µη(x, t) and covariance function Covη(x, t;x
′, t′)

are known at points x and x′ in D and time instants t and t′ in [t0, t1]

– in this case, we do not have a formula for η(x, t;ω) so that we cannot
evaluate η(x, t;ω) when we need to

• Actually, we usually do not even know the covariance function
so that instead, it is often guessed; common guesses are

exponential covariance Cov(x, t;x′, t′) = e−
|x−x′|
L − |t−t

′|
T

(multivariate) Gaussian covariance Cov(x, t;x′, t′) = e
− |x−x

′|2
L2 − |t−t

′|2
T2

(general) Gaussian covariance Cov(x;x′) = e−(x−x′)TΣ−1(x−x′)

where

L denotes the correlation length

T the correlation time

Σ a symmetric positive definite matrix

– large L and T correspond to long-range correlation whereas small L and
T correspond to short-range correlation

• Note that, in general, covariance functions are symmetric and non-negative

- for the sake of simplicity, we will assume they are positive

• Examples of known covariance functions

– one-dimensional Weiner process or Brownian motion Wt for which

µ(t) = 0 and Cov(t, t′) = min(t, t′)

– the Ornstein-Uhlenbeck (or mean-reverting) process defined by the
stochastic ordinary differential equation

dη = θ(µ− η)dt + σdWt

where Wt is a Wiener process so that we have that dWt is Gaussian white
noise

θ = the deterministic speed of reversion

µ = the long-run equilibrium level or mean respectively

σ2 = the variance

- the solution of this stochastic ODE is given by

η(t;ω) = η0e
−θt + µ(1− e−θt) + σe−θt

∫ t

0

eθsdWs

- η0 denotes the deterministic initial condition

- the corresponding mean is given by

µη(t) = E
(
η(t; ·)

)
= η0e

−θt + µ
(
1− e−θt

)
=⇒ hence the process is “mean reverting”

as t→∞, µη(t)→ µ for any initial data η0

- the covariance function is given by

Covη(t; t
′) = σ2e−θ(t+t

′)E
(∫ t

0

eθsdWs

)(∫ t′

0

eθudWu

)
=
σ2

2θ
e−θ(t+t

′)
(
e2θmin(t,t′) − 1

)

– the Matérn covariance

Cov(x;x′) = σ2 1

Γ(ν)2ν−1

(√
2ν
|x− x′|

L

)ν
Kν

(√
2ν
|x− x′|

L

)
σ2 = the variance

Γ(·) = the Gamma function

Kν(·) = the modified Bessel function of the second kind

ν = a parameter ν = 1
2 −→ Matérn reduces to exponential

• In other cases, Fourier spectral information about a correlated random field
is known

– an example is pink noise that has, in one dimension, a 1/f power spec-
trum, in contrast to the 1/f 0 and 1/f 2 power spectra for white noise and
Brownian noise, respectively; here f denotes the frequency

– again, we do not have a formula for the random field that we can evaluate
at spatial and temporal points

• Here, we consider the case for which the mean and covariance functions of
a random field are known or guessed

– in this case, we would like to find a simple formula depending on only a
few parameters whose mean and covariance functions are approximately
the same as the given mean and covariance functions

– expansions in terms of orthogonal polynomials provide a means for
approximating correlated random fields

– there also exist grid-based methods for this purpose

– we consider perhaps the most popular approach: the Karhunen-Loève
(KL) expansion of a correlated random field η(x, t;ω)

• Given the mean and covariance functions for a random field η(x, t;ω), the
KL expansion provides a simple formula for the random field in terms of an
infinite number of uncorrelated random parameters {yn}∞n=1

– in principle, a truncated KL expansion can be used whenever one needs a
value of η(x, t;ω) at a point x and a time t

Karhunen-Loève expansions of Guassian random fields

• To keep things simple, we discuss KL expansions for the case of time-
independent random fields; extension to the case of time-dependent fields is
straightforward

• Let η(x;ω) denote a Gaussian random field, i.e., at each point x, we draw
a sample from a standard Gaussian PDF

• Given the mean µη(x) and covariance Covη(x,x
′) of a random field η(x;ω),

the eigenpairs {λn, bn(x)}∞n=1 satisfy the eigenvalue problem∫
D

Covη(x,x
′) b(x′) dx′ = λb(x) ∀x ∈ D

– due to the symmetry of Covη(·; ·), the eigenvalues λn are real and the
eigenfunctions bn(x) can be chosen to be real and orthonormal, i.e.,∫

D
bn(x) bn′(x) dx = δnn′.

– due to the positivity4 of Covη(·; ·), the eigenvalues are all positive

- without loss of generality, they may be ordered in
non-increasing order λ1 ≥ λ2 ≥ · · ·

• Then, the random field η(x;ω) admits the KL expansion

η(x;ω) = µη(x) +

∞∑
n=1

√
λn bn(x) yn(ω)

where {yn(ω)}∞n=1 are sampled independently from the
standard normal distribution

4By non-negativity we mean that ∫
D

∫
D

Covη(x,x
′) b(x)b(x′) dx′dx ≥ 0

for all suitable functions b(x); in general, covariance functions are non-negative, but, for the sake of simplicity,
we assume positivity, i.e., the above relation holds strictly

• Thus, the KL expansion accomplishes two important things

– it provides a formula (albeit one involving and infinite number of pa-
rameters) for the correlated random field η(x;ω) in terms of random
parameters

– it expresses the correlated random field in terms of
uncorrelated parameters

• As an example of KL expansions, consider Brownian motion which has the
KL eigenpairs

λn =
1

(n− 1
2)2π2

and bn(t) =
√

2 sin
(
(n− 1

2
)πt
)

and the KL expansion

Wt =
√

2

∞∑
n=1

sin
(
(n− 1

2)πt
)

(n− 1
2)π

yn(ω)

• The usefulness of the KL expansion results from the fact that the eigenvalues
{λn}∞n=1 decay as n increases

– how fast they decay depends on the smoothness of the covariance function
Covη(x,x

′) and on the correlation length L

Peaked covariance function with Slowly decaying covariance function

very small correlation length with large correlation length

Corresponding KL eigenvalues Corresponding KL eigenvalues

• The decay of the eigenvalues implies that truncated KL expansions

ηN(x;y) = µ(x) +

N∑
n=1

√
λnbn(x)yn(ω)

can be accurate approximations to the exact expansions

y ∈ RN is the vector with components yn, n = 1, . . . , N

• Note that often in practice, µ(x) and bn(x) are only approximately known,
so that one is left with a spatial approximation to the truncated KL expansion

ηhN(x;y) = µh(x) +

N∑
n=1

√
λnb

h
n(x)yn(ω) ≈ ηN(x;y)

where µh(x) ≈ µ(x) and bhn(x) ≈ bn(x)

– thus we have an error induced by the truncation of the KL expansion
and an another error induced by, e.g., the spatial approximation of the
coefficients

- one endeavors to balance these two errors

– if one wishes for the relative error of the truncated expansion to be less
than a prescribed tolerance ε, i.e., if one wants5

E[‖ηN − η‖]
E[‖η‖]

≤ ε,

where here ‖ · ‖ denotes the L2(D) norm, one should choose N to be the
smallest integer such that∑∞

n=N+1 λn∑∞
n=1 λn

≤ ε2 or, equivalently,

∑N
n=1 λn∑∞
n=1 λn

≥ 1− ε2

– these estimates easily follow because the orthonormality of the eigenfunc-
tions {bn} imply that, e.g., ‖η‖2 =

∑∞
n=1 λn

– of course, in practice, the infinite sums appearing in these estimates would
themselves have to be truncated, with the number of retained terms being
considerably larger than N

– this requires computing more eigenpairs than the N one ends up using in
the truncated KL expansion

5For the sake of simplicity, for the time being we ignore the mean function µ(x); being a deterministic quantity,
its role in error estimation is straightforward to analyze

• It is easily seen that the covariance function for the truncated KL expansion
is given by

CovNη (x,x′) =

N∑
n=1

λnbn(x)bn(x′)

– then, a theorem due to Mercer shows the convergence of the covariance
function

– specifically, if Covη(x,x
′) is continuous, symmetric, non-negative definite,

and square integrable on D ×D, we then have

lim
N→∞

max
x,x′∈D

∣∣Covη(x,x
′)− CovNη (x,x′)

∣∣ = 0

• There are also estimates available that relate the decay of the eigenvalues
λn to the smoothness of the covariance function

– for example, if Covη(x,x
′) ∈ L2(D×D) is piecewise analytic on D×D,

then there exist constants c1 and c2 independent of n such that

0 ≤ λn ≤ c1e
−c2n1/d

for all integers n ≥ 1

i.e., we have exponential decay in the eigenvalues; here, d denotes the
spatial dimension

– if instead Covη(x,x
′) is merely piecewise Hk

0 (D×D), where Hk
0 (D×D)

denotes the Sobolev space of functions having square integrable derivatives
of order up to k that also vanish on the boundary of D×D, we have the
algebraic decay estimate

0 ≤ λn ≤ c2n
−k/d for all integers n ≥ 1

• To summarize

– we approximate a Gaussian random field η(x;ω) by its
N -term truncated KL expansion

– the parameters {yn}Nn=1 are uncorrelated

– because we are considering multivariate Gaussian random
variables, the parameters are also independent

– thus, we now have a formula for an approximation to a
correlated Gaussian random field that involves a finite
number of independent random parameters

– we can then use any of the methods involving models
with a finite number of random parameters to solve
problems defined in terms of Gaussian random fields

Approximating general non-Gaussian correlated random fields

• In many applications, random field inputs are assumed to
be not normally distributed

•We can still use the KL expansion to express the field in
terms of uncorrelated random parameters {yn}∞n=1

– formally, one only need draw samples yn, n = 1, 2, . . .,
from a desired non-Gaussian PDF

• There is a problem with doing this, which is often ignored in practice

– although the independence of random variables implies
that they are uncorrelated,
the converse is not in general true, i.e.,

uncorrelated does not imply independence

– a classic example is to

- let y1 ∈ [−1, 1] denote a uniformly distributed random variable

- then let y2 = y2
1

- clearly, y1 and y2 are not independent

- however, it is easy to show that Cov(y1, y2) = 0
i.e., y1 and y2 are uncorrelated

• In fact, uncorrelated implies independence only if the components of y are
multivariate Gaussian variables

i.e., if the components of y are jointly Gaussian

• So, for general non-Gaussian random fields, our only recourses are to
– assume that the KL parameters are independent (what is usually done), in

which case we simply express the random field in terms of its KL expansion
or
– using CDFs and inverse CDFs, express the non-Gaussian random field in

terms of a Gaussian random field and then use the KL expansion for the
latter

