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Objectives
Using a surrogate model (SM), we seek to mimic
the input-output relationship, x → h, of compu-
tationally expensive molecular models of polymer
rheology. We build an SM, h = m̂(x), where
m̂ : Rd → RN , with x representing the structure of
the polymer mixture, and the output h represent-
ing the rheology. The things we considered when
building the SM:

1. Computational Cost
2. Prediction Accuracy
3. Functional Output

GPsep
Given n different input observations, and each
observation being a vector-valued function defined
over a grid s of size N , a naïve GP regression
implementation cost O(n3N3) [1].

In [2], we used a separable kernel

k(xi, s;xj , s′) = kx(xi,xj).ks(s, s′) (1)

This reduces the computational cost

O(n3) + O(N3) (2)

Using a separable kernel has the following draw-
back

1. Constant predictive uncertainty σ̂2
∗.

2. Can address only stationary processes.

Results
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Figure 3: This figure illustrates the predicted mean along with 95% confidence region for two test points
x∗ = {[34.0, 9.0, 1.10, 1.42, 0.84], [44.5, 8.5, 1.06, 1.11, 0.62]} in first and second column respectively. The first and
second row corresponds to the training set of size n = {102, 1608} respectively. The dashed black line represents
the true relaxation spectrum h.
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Figure 4: This figure illustrates the variation of root mean square error(RMSE) and computational time with
n. As n increases, the model learns a better input-output mapping. However, it comes at the expense of more
computational resources. The asymptotic limit of computational complexity can be observed for larger n.

References
[1] Carl Edward Rasmussen and Christopher K. I. Williams.

Gaussian Processes for Machine Learning. The MIT
Press, Cambridge, MA, 2006.

[2] Pankaj Chouhan and Sachin Shanbhag. Surrogate model-
ing with gaussian processes for an inverse problem in poly-
mer dynamics. International Journal of Computational
Methods, page 2143003, 2022.

Future Research
Explore KLGP and KLSVGP models on a real-
world dataset, preferably on a dataset where a
separable kernel is not suited. Furthermore, imple-
ment a parallel version of KLSVGP and KLGP.
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Input Data

TDD-DR pyReSpect
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Figure 1: Schematic diagram showing the true model
m̂(x) (dotted line), which includes the TDD-DR model
and the pyReSpect program. It takes in polymer blend
information in the form of x = [Z1, Z2, ρ1, ρ2, w1] and
yields the relaxation spectrum.
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Figure 2: Four different realization of relaxation
spectrum h(s), observed on a grid s of size 100,
N = 100.

KLGP and KLSVGP
1. Karhunen-Loève expansion-based gaussian

process (KLGP), a modified model based on
the functional principal component analysis.

2. Using KL expansion, h can be written as

h(s,x) = h̄(s) +
∞∑

i=1

√
λiξi(x)ϕi(s) (3)

where ϕi and λi are eigenvalues and eigen-
vectors of empirical co-variance matrix built
using training labels h. ξi ∼ N(0, 1) is a i.i.d
random variable, that we fit using a GP.

3. We pick J principal modes such that 99% of
the original variance is captured.

4. Using KLGP, one large Rd → RN prob-
lem is split into J small Rd → R prob-
lems. Thus, the final training cost becomes
JO(n3) + O(N3).

5. KLSVGP, a model that allows batch train-
ing of the KLGP model, uses m ‘inducing’
points to summarize n training points, where
n >> m. The cost of training KLSVGP is
O(Jm3).


