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Gaussian Process Modeling for Polymer Dynamics
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Using a surrogate model (SM), we seek to mimic Given n different input observations, and each
the input-output relationship, * — h, of compu- observation being a vector-valued tunction defined

tationally expensive molecular models of polymer over a grid s of size N, a naive GP regression 0.10
rheology. We build an SM, h = m(x), where implementation cost O(n°N?) [1].

m : RY — RN, with & representing the structure of 0.05
the polymer mixture, and the output h represent- In 2], we used a separable kernel
ing the rheology. The things we considered when , , 000
building the SM: k(xi, s;xj,8") = kg (@i, x;).ks(s, 5') -
1. Computational Cost This reduces the computational cost
2. Prediction Accuracy ; ;
3. Functional Output O(n”) + O(N7)
0.10
Using a separable kernel has the following draw-
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§ 1. Constant predictive uncertainty 2. |
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} spectrum 2. Can address only stationary processes. 0.00

Figure 1: Schematic diagram showing the true model

7 (z) (dotted line), which includes the TDD-DR model | A4 PI@Y 2F:¥1Ts B - € Mo A4 €] &

and the pyReSpect program. It takes in polymer blend
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Figure 3: This figure illustrates the predicted mean along with 95% confidence region for two test points

information in the form of & = [Z1, Z2, p1, p2, w1]| and . Karhunen-Loeve expansion-based gaussian x. = {[34.0,9.0,1.10,1.42,0.84], [44.5,8.5,1.06,1.11,0.62]} in first and second column respectively. The first and

yields the relaxation spectrum.

the tunctional principal component analysis. the true relaxation spectrum h.

15.0.9.0.1.22. 1.45. 0.45) . Using KL expansion, h can be written as

43.0,15.5,1.08, 1.35, 0.65) -,
34.0,9.0,1.1,1.42, 0.84) 10
44.5 8.5 1.06,1.11, 0.62)
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where ¢; and A; are eigenvalues and eigen- Cs 1073
vectors of empirical co-variance matrix built N
using training labels h. & ~ N(0,1) isa ¢.7.d
random variable, that we fit using a GP.
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Figure 2: Four different realization of relaxation

spectrum h(s), observed on a grid s of size 100, . p N )
N = 100. . Using KLGP, one large R* — R* prob

. We pick J principal modes such that 99% of
the original variance is captured.

lem is split into J small R — R prob-
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Figure 4: This figure illustrates the variation of root mean square error(RMSE) and computational time with
| o n. As n increases, the model learns a better input-output mapping. However, it comes at the expense of more
lems. Thus, the final training cost becomes computational resources. The asymptotic limit of computational complexity can be observed for larger n.
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