
F L O R I D A  S T A T E  U N I V E R S I T Y 	

Learning How Stars Explode: Supernovae, Tur-
bulent Combustion, and Machine Learning
Brandon Gusto, Tomasz Plewa
Department of Scientific Computing
Florida State University

Contact Information:
Brandon Gusto

blg13@fsu.edu

Introduction
The process of thermonuclear explosion of a white dwarf (WD) star during a Type Ia supernova (SN)
event represents an interesting and challenging problem for theorists, computational modelers, and ob-
servers. SN Ia are referred to as ‘standard candles’ because of their predictable brightness, allowing them
to be used by astronomers as distance indicators. They are also of interest from the perspective of basic
combustion physics, as the exact mechanism of the explosion remains a topic of active research. The
basic combustion mechanisms believed to occur in SN Ia are relevant to many terrestrial applications as
well.

The mode of burning during the explosion process affects the final composition of the SN ejecta, the
brightness, and many other properties of interest to observers. It is speculated that the explosion process
begins as a subsonic deflagration driven by thermonuclear burning near the central region of the star.
The deflagration plume is unstable to Rayleigh-Taylor (RT) instability effects as buoyancy forces drive
it to the surface of the star. Studies have found that a transition to a supersonic detonation is possible
within the small-scale turbulence generated by the RT flame [2]. In this work we examine the exact
mechanism that causes the deflagration-to-detonation transition (DDT), and we develop a machine
learning model to predict its occurrence.

Due to the disparate spatial scales involved, a domain decomposition strategy is typically used
to simulate large, intermediate, and small scale physics processes independently. The evolu-
tion of the spatial scales during the explosion phase of the SN Ia are illustrated in Figure 1.

Figure 1: Evolution of spatial scales during the explosion
phase of the SN Ia. The physics and simulation regimes cor-
responding to the spatial scales are highlighted.

The largest scale is determined by the
size of the WD itself. At this scale, the
conditions for RT instability are deter-
mined. Below this scale the turbulent en-
ergy transfers from large to small scales in
a cascading fashion. Modelers typically
use large-eddy simulation (LES) to study
physics from these large scales down to
about 1 km of resolution.

As the turbulent flow develops, the scale
of the smallest eddies decreases (see the
bottom edge of zone 3 in Figure 1). Mean-
while as the density decreases during the
explosion, the flame thickness increases.
At some point the flame thickness is ex-
pected to become comparable to the scale
of the smallest eddies, and those eddies
are able to penetrate the flame surface be-
fore being burned away, fragmenting the
flame. At this point, the distributed
flame regime is reached and DDT may
be possible. In this work we use direct
numerical simulation (DNS) to study the
exact mechanism responsible for the tran-
sition.

Methods
We explore the connection of scales in the exploding WD by developing a model for predicting DDT on
small scales based on the Zel’dovich reactivity gradient [3, 1]. The mechanism involves the coupling of
a spontaneously generated reactive wave with the acoustic wave produced by expansion of the gas.
The phase velocity of the reactive wave depends on the spatial gradient of the induction time, τ , which is
the estimated amount of time it takes an element to burn its carbon fuel.

A criterion for DDT within a region r0 of preconditioned fuel, also known as a hotspot, is given by [1]
as

σ0 <
r0
αc0

, (1)

where σ0 is the standard deviation of induction times in the region, c0 is the soundspeed, and α is a pa-
rameter that depends on other physical quantities such as the density or background velocities. The term
r0/c0 gives the sound-crossing timescale. A larger value indicates a slower outgoing compressive wave.
A small magnitude of σ0 with respect to the local induction times indicates that the phase velocity
of the reactive wave is high.

We execute over 25, 000 DNS studies with varying initial hotspot profile shapes, background velocities,
and other quantities. We analyze the initial conditions by computing the reactive versus sound-
crossing timescales according to Equation 1. The results have implications for the possibility of DDT
during the explosion phase of SN Ia.

Then we develop a model to predict the potential for hotspots to spontaneously detonate. We introduce
a neural-network based model that solves a binary classification problem. The network is trained on the
DNS database. Several features selection strategies are used. A naive strategy is used that considers
the spatial profile of induction time or other variables. We also explore another strategy, the Khokhlov
strategy, that considers the timescales in Equation 1 among other quantities.

The network training process is illustrated for the simplest naive strategy in Figure 4,

Figure 2: Overview of the neural network based learning strategy. Hotspot profiles are passed as inputs to the network,
with labels of ‘no detonation’ and ‘detonation’ being learned. Several hidden layers are used which may be convolutional
layers, fully connected layers, or a combination thereof.

with induction time profiles being passed as inputs, and labels of ‘no detonation’ and ‘detonation’ being
learned. We use a convolutional neural network (CNN) for the naive approach and an artificial neural
network (ANN) for the Khokhlov approach.

Results
We show the results of the DNS of a single hotspot configuration in Figure 3.

Figure 3: Direct numerical simulation of a hotspot. Shown is the evolution of temperature (top left panel), Mach number
(top right panel), pressure (bottom left panel), and carbon abundance (bottom right panel) at seven times during the evo-
lution.

The evolution in temperature, Mach number, pressure, and carbon abundance is plotted at seven times.
Initially at time t1, burning in the center of the region (x = 0 cm) causes expansion, a buildup of pressure,
and the eventual creation of an outgoing compressive wave by time t2. As the compressive wave travels
outward, the reactive wave behind it continues to generate overpressure. The compressive wave steepens
into a shock as it collides with slower, denser material ahead of it, eventually creating a shock-reaction
structure (a detonation wave).

Analysis of the whole DNS dataset using Equation 1 on the reactive versus sound-crossing timescale
plane is shown in Figure 4.

Figure 4: Results of the DNS dataset on the reactive versus sound-crossing timescale plane, divided into non-detonating
(left panel) and detonating (right panel) subsets.

In the left panel, the non-detonating samples are concentrated in the upper left portion of the plane,
indicating that large reactive timescales and small sound-crossing timescales are unfavorable for
detonation formation. Likewise the detonating samples are concentrated lower and more to the right,
indicating that smaller reactive timescales and larger sound-crossing timescales are more favorable.

Different neural network strategies are trained using the DNS dataset. All of the strategies demonstrate
good accuracy on both the training data and the validation data. A 90/10 split of the whole DNS dataset
is used to form the training and validation sets, respectively.

Finally we present the results of the trained network on predicting the onset of detonation from hotspots
in reactive LES. In Figure 5

Figure 5: Performance of the network trained using the
Khokhlov feature selection strategy when used to detect
hotspots in LES of reactive turbulence.

we show the network’s confidence in a det-
onation occurring (indicated by the col-
ormap), with 0 being the lowest confidence
and 1 being the highest, on the δt versus δx
plane, where δt is the time before the detona-
tion formation and δx is the absolute distance
from the location of the hotspot from which
the detonation was formed. We find the net-
work has a good ability to positively identify
imminent detonations roughly 2 × 10−4 to
4× 10−4 seconds prior to their formation.
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