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Abstract

Most engineering and science problems require us to solve complex
partial differential equations (PDE). Optimizing for a particular
parameter for a physical system can be computationally expensive
due to repetitive computations. Deep learning techniques have worked
well with data with large dimensions[1]. Hence, we propose to use
deep neural network architecture to learn the mapping between the
parameter and function spaces. In this research work, we would
like to focus on formulating Deep neural learning high-dimensional
functions with deep neural network architecture. This is ongoing
research work, and more results are in progress.

Introduction

In this work, the primary objective is to demonstrate that deep
neural networks can be an effective approach in learning the mapping
from the parameter space to solution space. For example, consider
the following parametric PDE:

−∇x(a(x, y), ∇xu(x, y)) = F (x), x ∈ Ω (1)
u(x, y) = 0, on ∂Ω

The DNN architecture is employed in this work to approximate the
parametric mapping to the solution space y 7→ u(·, y).

Challenges

■ The targeted function to be approximated is high-dimensional,
i.e. ‘curse of dimensionality’.

■ It is computationally expensive to generate the data, requiring
solution of a PDE to obtain each sample u(·, yi)

■ The data can be corrupted with errors, e.g. discretization,
measurement, and/or numerical errors from the solver

■ The solution map y 7→ u(·, y) takes up values typically in
Hilbert or Banach spaces, i.e. infinite-dim. function spaces

Methodology

In this work we consider training a DNN as a surrogate for the
parameter to solution map for an underlying parametric PDE model.
Our goal is to learn a high dimensional function:

f : U 7→ V , y 7→ u(·, y)
with U ⊂ Rd, d ∈ N and V is the solution space of the parameterized
PDE, from samples {(yi, u(·, yi))}m

i=1.

Figure 1: Schematic for the methodology used in the current work to map the
parameter space to solution space

Results

Figure 2: Comparison of the output of the DNN after training for (a) 1000 epochs,
(b) 5000 epochs, (c) 10000 epochs, and (d) plot of the loss vs. epochs of training.

Discussion

It was shown in [2] that DNNs can approximate high-dimension
smooth functions with error

∥f − f̂∥L2
ϱ(U ;V) ≲ Eapp + mθ(Edisc + Esamp + Eopt)

where θ = 0 if V is a Hilbert space, or θ = 1/4 if V is a Banach
space and

Eapp ≲ ch · (m/L)−σ(p) , Esamp =
√

1
m

∑m
i=1∥ni∥2

V,

Edisc = ∥f − Ph(f )∥L∞
ϱ (U ;V),

where σ(p) > 0 is given by σ(p) = 1
p − 1

2 if V is a Hilbert space,
or if V is a Banach space, σ(p) = p − 1 (known anisotropy) or
σ(p) = 1

2(
1
p − 1

2) (unknown anisotropy). Here

■ Eapp (approximation error): depends on m and smoothness of
the parameter to solution mapping

■ Edisc (discretization error): since we work in a
finite-dimensional subspace Vh

■ Esamp (measurement error): quantifies the error in the
point-wise evaluations

■ Eopt (optimization error): depends on training, proportional to
loss function error

References

[1] Dexter, N., Adcock, B., Brugiapaglia, S., Moraga, S. (2022,
October). Effective deep neural network architectures for learning
high-dimensional Banach-valued functions from limited data. In
2022 Fall Southeastern Sectional Meeting. AMS.

[2] Adcock B., Brugiapaglia S., Dexter N., Moraga S., “Near-optimal
learning of Banach-valued, high-dimensional functions via deep neural
networks.” arXiv preprint arXiv:2211.12633 (2022).


