
Methods
▪ Pre-trained language models
Language models have general knowledge about the language and are 
considered the fundamental basis of NLP neural network approaches. 
As language models grow in complexity, their parameter count 
increases, reaching upwards of hundreds of billions of parameters. 
Training from scratch is impractical for most researchers. Substantial 
work has shown that pre-trained models on large corpora can learn 
general language features beneficial for downstream tasks. Finetuning 
pretrained models on downstream tasks is now the mainstream 
approach in NLP. In this work, we initialize our model with pretrained 
Bert[1], providing a warm starting point for faster convergence. 
▪ Pretraining POS language model
Inheriting the idea of language modeling, a POS language model is a 
probability distribution over POS sequences that posses a general 
understanding of the syntactic properties of the sequence. Before 
pretraining, a POS tagger transforms text into sequences of POS 
tokens. During the training process, as directed by previous empirical 
analysis, the data loader dynamically and randomly masks 15% of the 
tokens, and the pretraining objective is to predict the masked token. The 
pretrained model is suitable for any downstream tasks involving a deep 
syntax understanding.
▪ Feature representation learning
Besides POS tokens, there are other content-free linguistic components 
that reflect a person’s writing style. Therefore, our model includes the 
following components as additional linguistic features:

○ A syntax tree is a tree representation of the hierarchical 
relationship between words in a sentence. Figure 1 shows an 
example of a dependency tree, one of the commonly used syntax 
trees.

○ Word length is a content-free superficial feature that reflects the 
author’s choice of words.

○ Word difficulty reflects the vocabulary richness and education 
level. In this work, we use the word frequency as a proxy feature. 
Specifically, for each word, we take the base-10 logarithm of the 
number of appearances per billion words and transform it as an 
integer.

We attach an edge list to each sentence for the dependency structure. 
In addition, we adopt an embedding layer for the dependency type on 
edge, the word length, and the word frequency to let the neural network 
learn the representation.

▪ Intra-sentence graph neural network
A graph neural network is a machine learning framework that works on 
graph-structured data. The core idea addresses message-passing 
between nodes in a graph, which empowers the network to 
transductive-ly propagate information to nearby nodes and capture the 
overall structure of the graph. In our case, we let the pretrained POS 
embedding exchange information along the dependency structure. 
Finally, we read out a global graph embedding with mean/max pooling 
to encode the syntactic information of a sentence.
▪ Inter-sentence self-attention graph
Sentences in a document are more than just placed sequentially. There 
are logical and conceptual relations in semantics. However, the 
relations are only clear with expert analysis. Therefore, we adopt the 
self-attention mechanism on a fully connected graph and let the network 
figure out the relation.

Figure 1 An example of dependency tree generated by Stanford Corenlp 
pipeline[2]. The tree consists of directed edges with the dependency 
relation on the edge.
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Experiments
▪ Data 
The CCAT50 dataset is a collection of news articles widely used as a 
benchmark dataset for authorship attribution[4]. The 50 refers to the 
number of authors. Each author has 1,000 articles, evenly divided into 
train and test sets.
▪ Model 

▪ Results

Discussion and future work
Our proposed model outperforms the previous state-of-the-art on 
CCAT50. The ablation study shows the importance of each component. 
Experiments on other datasets are in progress. Other syntactic 
information, such as the constituency tree, might be helpful.

Abstract 
Authorship Attribution is the process of identifying the author of an anonymous document. It involves using statistical and computational methods to 
analyze extensive collections of text. Traditional studies focus on finding useful patterns in linguistic and stylistic features to tell them apart. They also 
rely extensively on feature engineering. Many studies also use neural networks, which led to some improvements. However, they only consider local 
syntactic features and fail to deal with long-range dependencies. Our research presents a novel architecture based on word connections within 
sentences via dependency trees and connections between sentences via the self-attention mechanism. The sentence's sequential order and syntactical 
structure enable our model to outperform the state-of-the-art. We also conduct a comprehensive ablation study to analyze the effect of different linguistic 
components, including word order, word length, word frequency, dependency type, and sentence order.

Figure 2 Architecture of the proposed syntactical graph neural network. 
The syntactic embedding from the intra-sentence GNN and the semantic 
embedding from the pretrained Bert are concatenated as the input for the 
inter-sentence self-attention GNN.
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