
Methods
▪ Pre-trained language models
Language models have general knowledge about the language and are
considered the fundamental basis of NLP neural network approaches.
As language models grow in complexity, their parameter count
increases, reaching upwards of hundreds of billions of parameters.
Training from scratch is impractical for most researchers. Substantial
work has shown that pre-trained models on large corpora can learn
general language features beneficial for downstream tasks. Finetuning
pretrained models on downstream tasks is now the mainstream
approach in NLP. In this work, we initialize our model with pretrained
Bert[1], providing a warm starting point for faster convergence.
▪ Pretraining POS language model
Inheriting the idea of language modeling, a POS language model is a
probability distribution over POS sequences that posses a general
understanding of the syntactic properties of the sequence. Before
pretraining, a POS tagger transforms text into sequences of POS
tokens. During the training process, as directed by previous empirical
analysis, the data loader dynamically and randomly masks 15% of the
tokens, and the pretraining objective is to predict the masked token. The
pretrained model is suitable for any downstream tasks involving a deep
syntax understanding.
▪ Feature representation learning
Besides POS tokens, there are other content-free linguistic components
that reflect a person’s writing style. Therefore, our model includes the
following components as additional linguistic features:

○ A syntax tree is a tree representation of the hierarchical
relationship between words in a sentence. Figure 1 shows an
example of a dependency tree, one of the commonly used syntax
trees.

○ Word length is a content-free superficial feature that reflects the
author’s choice of words.

○ Word difficulty reflects the vocabulary richness and education
level. In this work, we use the word frequency as a proxy feature.
Specifically, for each word, we take the base-10 logarithm of the
number of appearances per billion words and transform it as an
integer.

We attach an edge list to each sentence for the dependency structure.
In addition, we adopt an embedding layer for the dependency type on
edge, the word length, and the word frequency to let the neural network
learn the representation.

▪ Intra-sentence graph neural network
A graph neural network is a machine learning framework that works on
graph-structured data. The core idea addresses message-passing
between nodes in a graph, which empowers the network to
transductive-ly propagate information to nearby nodes and capture the
overall structure of the graph. In our case, we let the pretrained POS
embedding exchange information along the dependency structure.
Finally, we read out a global graph embedding with mean/max pooling
to encode the syntactic information of a sentence.
▪ Inter-sentence self-attention graph
Sentences in a document are more than just placed sequentially. There
are logical and conceptual relations in semantics. However, the
relations are only clear with expert analysis. Therefore, we adopt the
self-attention mechanism on a fully connected graph and let the network
figure out the relation.

Figure 1 An example of dependency tree generated by Stanford Corenlp
pipeline[2]. The tree consists of directed edges with the dependency
relation on the edge.

References
[1] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.
[2] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky, D. (2014, June).
The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of
the association for computational linguistics: system demonstrations (pp. 55-60).
[3] Zhang, R., Hu, Z., Guo, H., & Mao, Y. (2018). Syntax encoding with application in authorship
attribution. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (pp. 2742-2753).
[4] Jafariakinabad, F., & Hua, K. A. (2021). Unifying Lexical, Syntactic, and Structural Representations
of Written Language for Authorship Attribution. SN Computer Science, 2(6), 481.
[5] Wu, H., Zhang, Z., & Wu, Q. (2021). Exploring syntactic and semantic features for authorship
attribution. Applied Soft Computing, 111, 107815.

Jingze Zhang, Gordon Erlebacher
Department of Scientific Computing, Florida State University

Experiments
▪ Data
The CCAT50 dataset is a collection of news articles widely used as a
benchmark dataset for authorship attribution[4]. The 50 refers to the
number of authors. Each author has 1,000 articles, evenly divided into
train and test sets.
▪ Model

▪ Results

Discussion and future work
Our proposed model outperforms the previous state-of-the-art on
CCAT50. The ablation study shows the importance of each component.
Experiments on other datasets are in progress. Other syntactic
information, such as the constituency tree, might be helpful.

Abstract
Authorship Attribution is the process of identifying the author of an anonymous document. It involves using statistical and computational methods to
analyze extensive collections of text. Traditional studies focus on finding useful patterns in linguistic and stylistic features to tell them apart. They also
rely extensively on feature engineering. Many studies also use neural networks, which led to some improvements. However, they only consider local
syntactic features and fail to deal with long-range dependencies. Our research presents a novel architecture based on word connections within
sentences via dependency trees and connections between sentences via the self-attention mechanism. The sentence's sequential order and syntactical
structure enable our model to outperform the state-of-the-art. We also conduct a comprehensive ablation study to analyze the effect of different linguistic
components, including word order, word length, word frequency, dependency type, and sentence order.

Figure 2 Architecture of the proposed syntactical graph neural network.
The syntactic embedding from the intra-sentence GNN and the semantic
embedding from the pretrained Bert are concatenated as the input for the
inter-sentence self-attention GNN.

Model Accuracy

Syntax-CNN[3] 81.00

Style-HAN[4] 82.35

MCSAN[5] 83.42

Our model 84.08

Model Accuracy

Our model 84.08

 w/o inter-GNN 83.4

semantic 82.44

syntactic 71.28

 w/o intra-GNN 45.88

Syntactical Graph Neural Network
for Authorship Attribution

