AI Tools for Education and Research

Gordon Erlebacher
Department of Scientific Computing
Florida State University
With great power comes great responsibility.
Outline

❖ Introduction
❖ Transformer Architecture
❖ Prompting
❖ AI model comparison
❖ AI for Education
❖ AI helps Coding
❖ Conclusions and Predictions
Introduction
Rise of AI

AI TIMELINE: 1947-2020

1947
Alan Turing talks about AI in London

1950
Turing's papers on Intelligent machines

1966
MIT releases the ELIZA chatbot

1997
Deep Blue beats Garry Kasparov in chess

2011
IBM Watson beats players on Jeopardy!

2015
AlphaGo beats Fan Hui

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

2017
Google Transformer

2018
GPT-1 117M

2019
GPT-2 1.5B

2020

Jan
Google Meena 2.6B
May
GPT-3 175B
Jun
iGPT 6.8B
Sep
GPT-3 writes newspaper column
2016

AlphaGo: 5
Lee Sedol: 1
ARTIFICIAL INTELLIGENCE SOLVES 50 YEAR OLD SCIENCE PROBLEM (ALPHAFOLD) 2018-2020
Google Home

Roomba

Boston Dynamic

AI-enhanced cameras

Samsung

Ai-designed chip
AI’s Evolutionary Journey: 2019-mid2023
What is a Large-Language Model?

a next word predictor given all the previous words in a context
How to use LLMs

❖ LLMs are extremely powerful
❖ LLMs are fallible
❖ Do not implicitly trust a LLM
❖ Consider polling multiple LLMs
❖ Ask a question several times in separate conversations
❖ Be aware of the context length of each LLM (for now)
Main parameters in a LLM

- **Context size**: the maximum number of input characters
- **Model size**: the number of unknown parameters in the neural network
- **Time to train**: how long the network is trained for

If some function of the three is large enough, *emergence* can take place.
The Data

- **Input data** \((x_1, x_2, \ldots, x_n)\) where \(x_i\) is one or more sentences where total number of words \(\leq N\), where \(N\) is the **context length**

- **Example:** GPT-4 has a context length of 16,000 tokens.
- The maximum length of \(x_i\) is 16,000 tokens (approx. 12,000 words).
- A 15 page NSF grant in 11 pt font will have \(O(7500)\) words.
- An NSF grant \(\leq x_i\) for GPT-3.5 (ChatGPT)
Tokenization

❖ **Input sentence:** “What is the meaning of this sentence? The meaning is clear to me.”

❖ Each character is a token:
 ❖ ['W', 'h', 'a', 't', ' ', 'i', 's', ' ', 't', 'h', 'i', 's', ' ', 's', 'e', 'n', 't', 'e', 'n', 'c', 'e', '?', ' ', 'i', 't', 's', ' ', 'c', 'l', 'e', 'a', 'r', 't', 'o', ' ', 'm', 'e.']
 ❖ Hard to work with

❖ Each space-delimited word is a token:
 ❖ ['What', 'is', 'the', 'meaning', 'of', 'this', 'sentence', '?', 'clear', 'to', 'me']
 ❖ Very large vocabularies. Some languages do not have spaces.

❖ Sub-word tokenizer: identify most common `n-grams`: (depends on the vocabulary size)
 ❖ ['__What', '__is', '__the', '__mean', 'ing', '__of', '__this', '__s', 'ent', 'ence', '?', '__The', '__mean', 'ing', '__is', '__cle', 'ar', '__to', '__me.']
 ❖ Works across all languages.
 ❖ Most common algorithm in Large-language models: Sentencepiece
 ❖ Combines the advantages of character-based and word-based tokenization
Tokenization

- **Input sentence**: “What is the meaning of this sentence? The meaning is clear to me.”
- Each character is a token:
 - ['W', 'h', 'a', 't', 'i', 's', 'e', 'n', '...]
 - Hard to work with
- Each space-delimited word is a token:
 - ['What', 'is', 'the', 'meaning', 'of', 'this', 'sentence', '?', 'clear', 'to', 'me']
 - Very large vocabularies. Some languages do not have spaces.
- Sub-word tokenizer: identify most common `n-grams`: (depends on the vocabulary size)
 - [__What', '__is', '__the', '__mean', 'ing', '__of', '__this', '__s', 'ent', 'ence', '?', '__The', '__mean', 'ing', '__is', '__cle', 'ar', '__to', '__me.]
 - Works across all languages.
 - Most common algorithm in Large-language models: Sentencepiece
 - Combines the advantages of character-based and word-based tokenization
Tokenization

- **Input sentence:** “What is the meaning of this sentence? The meaning is clear to me.”

- Each character is a token:
 - ['W', 'h', 'a', 't', ' ', 'i', 's', ' ', 't', 'h', 'i', 's', ' ', 's', 'e', 'n', 't', 'e', 'n', 'c', 'e', '?', ' ', 't', 'h', 'e', ' ', 'm', 'e', 'a', 'n', 'i', 'n', 'g', ' ', 'i', 's', ' ', 'c', 'l', 'e', 'a', 'r', ' ', 't', 'o', ' ', 'm', 'e. ']
 - Hard to work with

- Each space-delimited word is a token:
 - ['What', 'is', 'the', 'meaning', 'of', 'this', 'sentence', '?', 'clear', 'to', 'me']
 - Very large vocabularies. Some languages do not have spaces.

- Sub-word tokenizer: identify most common n-grams: (depends on the vocabulary size)
 - ['__What', '__is', '__the', '__mean', 'ing', '__of', '__this', '__s', 'ent', 'ence', '?', '__The', '__mean', 'ing', '__is', '__cle', 'ar', '__to', '__me.']
 - Works across all languages.

- Most common algorithm in Large-language models: Sentencepiece

- Combines the advantages of character-based and word-based tokenization
Tokenization

- **Input sentence:**
 "What is the meaning of this sentence? The meaning is clear to me."

- Each character is a token:
 - ['W', 'h', 'a', 't', ' ', 'i', 's', ' ', 't', 'h', 'i', 's', ' ', 's', 'e', 'n', 't', 'e', 'n', 'c', 'e', '?', ' ', 't', 'h', 'i', 's', ' ', 's', 'e', 'n', 't', 'e', 'n', 'c', 'e', '?', ' ', 'c', 'l', 'e', 'a', 'r', ' ', 't', 'o', ' ', 'm', 'e', '.']
 - Hard to work with

- Each space-delimited word is a token:
 - ['What', 'is', 'the', 'meaning', 'of', 'this', 'sentence', '?', 'clear', 'to', 'me']
 - Very large vocabularies. Some languages do not have spaces.

- Sub-word tokenizer: identify most common `n-grams`: (depends on the vocabulary size)
 - ['__What', '__is', '__the', '__mean', '__ing', '__of', '__this', '__s', 'ent', 'ence', '?', '__The', '__mean', '__ing', '__is', '__cle', 'ar', '__to', '__me.']
 - Works across all languages.
 - Most common algorithm in Large-language models: Sentencepiece
 - Combines the advantages of character-based and word-based tokenization
Context of 4000 Tokens

❖ “Please tell me about the history of mathematics”
❖ The max size is 4000 words
❖ The used size is 8 words

❖ In chatGPT, all questions and answers up to the current questions must fit within the context
❖ Therefore, a larger context is often better!
Context Length

- GPT3: 2k
- ChatGPT: Nov. 2021: 4k, Aug. 2023: 32k
- GPT-4: 32k
- Claude-2: 100k
- Llama-Code: 100k

- For reference: The Great Gatsby (book) has 72k tokens (210 pages)
Transformer Architecture
Unpacking the Transformer

❖ Input is a context:
 ❖ one or more words, sentences, paragraphs
❖ Output is another context

❖ Examples:
 ❖ English paragraph —> French paragraph
 ❖ Orthography —> Phonology
 ❖ Images —> Captions
 ❖ Text —> Images, Video
❖ More generally: input_sequence —> output_sequence
Transformer Elements

- **Input Sequence**
 Text tokens (or other data types) are fed into the model as a sequence

- **Encoder Layers**
 Process the input sequence and produce an intermediate representation input into the decoder

- **Decoder Layers**
 Generate the output sequence embedding based on the processed input

- **Attention**
 Captures relationships and dependencies between tokens regardless of separation

- **Output Sequence**
 Transformed sequence of tokens
High-Level Transformer Architecture

- Input sequence \rightarrow Encoder
- The cat is not at home.
- Encoder output + output sequence \rightarrow Decoder
- La chatte n’est pas a la maison.
- Decoder output into Softmax for token prediction
Simplified Transformer Encoder

- $s = x_n \rightarrow$ Input embedding token
- embedding: vector $\in \mathbb{R}^{N \times d}$
- Context: N tokens
- Multi-head attention
- see next slide
- Output: intermediate representation
- N tokens, each in embedding space \mathbb{R}^d
Self-Attention

- Each word (token) relates to every other word
- These links have different strengths
- Cost grows quadratically with context length
- **Active research:**
 - Speed up attention
 - Reduce memory requirements
 - Increase context length
Simplified Transformer Decoder

- Input embedding
- Masked tokens $\rightarrow \mathbb{R}^{N \times d}$
- Context: max of N tokens
- Multi-head cross attention
 - Similar to self-attention with input from the encoder
- Feed-forward network for mixing
- Output: N tokens, each in \mathbb{R}^{d}
Large-Language Model: Decoder-Only

- Used when input and output sequences are of the same nature (i.e., English text).
- Given tokens \((x_1, \ldots, x_n)\), predict token \(x_{n+1}\).
- Prompt: "Paris is the capital of?"
- Most likely reply of a good model with next word prediction: "France."
- ChatGPT reply: "Paris is the capital of France."
Life Cycle of a LLM

Source: https://medium.com/@kanikaadik07/generative-ai-project-life-cycle-55ce9092e24a
Prompting
Generating good prompts

❖ Consider whether you’d expect the answer to your question to exist on the internet
❖ Asking about the composition of remote stars
 ❖ probably poor response
❖ Asking about life on Ferenginar
 ❖ probably good response
Prompting Techniques

- Single shot learning
- Multi-shot learning
- Step-by-Step prompting
- Chain-of-thought prompting
- Assign a Role
User Prompt:

- Which is a faster way to get to work?
- Option 1: Take a 1000-minute bus, then a half-hour train, and finally a 10-minute bike ride.
- Option 2: Take an 800-minute bus, then an hour train, and finally a 30-minute bike ride.

AI reply
Option 1 is a faster way to get to work.
Multi-Chain Prompting

User Prompt:
Which is a faster way to get home?
Option 1: Take an 10 minutes bus, then an 40 minute bus, and finally a 10 minute train.
Option 2: Take a 90 minutes train, then a 45 minute bike ride, and finally a 10 minute bus.
Option 1 will take 10+40+10 = 60 minutes.
Option 2 will take 90+45+10=145 minutes.
Since Option 1 takes 60 minutes and Option 2 takes 145 minutes, Option 1 is faster.
Which is a faster way to get to work?
Option 1: Take a 1000 minute bus, then a half hour train, and finally a 10 minute bike ride.
Option 2: Take an 800 minute bus, then an hour train, and finally a 30 minute bike ride.

AI reply:
Option 1 will take 1000+30+10 = 1040 minutes.
Option 2 will take 800+60+30 = 890 minutes.
Since Option 2 takes 890 minutes and Option 1 takes 1040 minutes, Option 2 is faster.
Single user prompt with a single example

❖ Q: What is a dog?
❖ A: A dog is a domesticated mammalian carnivore that is commonly kept as a pet or for hunting. Dogs typically have a long snout, an acute sense of smell, non-retractile claws, and bark to communicate. Common breeds include Labrador, German Shepherd, and Poodle.

Q: What is a horse?
Multi-Shot Learning

Single User Prompt with multiple examples

❖ Q: What is a dog?
❖ A: A dog is a domesticated mammalian carnivore that is commonly kept as a pet or for hunting. Dogs typically have a long snout, an acute sense of smell, non-retractile claws, and bark to communicate. Common breeds include Labrador, German Shepherd, and Poodle.

❖ Q: What is a cat?
❖ A: A cat is a domesticated carnivorous mammal that is valued for its companionship and ability to hunt pests. Cats have retractile claws, whiskers, excellent night vision and hearing, and a talent for climbing. Common breeds include Siamese, Persian, and Maine Coon.

❖ Q: What is a horse?
Application of Transformers: Beyond Text

❖ Generative Image Generation
❖ Dall-E 2, Midjourney, Leonardo, Stable Diffusion, etc.
❖ Combines GAN, Transformers, diffusion
❖ Caption generators
❖ Music Generators
❖ Video generation

Near future:
- Video to text
- Music to text
- Video to music etc.
Overleaf and Word

- Collaborative tools for Latex report writing
- AI tools integrated with Overleaf
 - Quillbot
 - WriteFull
 - Latext AI (Chrome plugin)
- More tools for Word
Comparison of AI Models
LLMs in my Daily Work

- ChatGPT / GPT4
- Claude-2
- Perplexity
ChatGPT / GPT4 by OpenAI

- My go-to tool
- Vast knowledge
- Limitation: relatively small context length
- GPT4 ($$) includes:
 - Plugins
 - Code Interpreter
 - Web browser (currently disabled)
Claude-2 by Anthropic

- 100k token context length
- Allows file uploading
 - Query the uploaded files
 - “Converse” about your papers
- Very polite, strives to please
Perplexity.ai by Perplexity AI

- Powered by GPT3.5
- Conversational search engine
- Ask questions in natural language
- Searches the internet
- Collates the results and returns a reply with citations in natural language
- Ask follow-up questions
- Its answers are more accurate than other Chat engines
GPT-4 plugins

- Close to 1000 plugins
- Wide range of capability
- Will get better in time
- Plugins connect GPT4 to external applications
- Open up to three plugins
- GPT4 chooses which plugin(s) to use
Chat Agents

- Langchain
- Llama-index
- SimpleAIChat
- Create your own chatbot
- Extend the context length with a Vector Database
- Create your own Perplexity
Ethical Considerations

❖ Avoid misuse of LLM
 ❖ disinformation
 ❖ fake videos
 ❖ using LLM agents to create chaos, sow fear, etc.
❖ LLM’s might have captured personal information from the public web
 ❖ avoid using this information
❖ Dangers in providing advice to people based on LLM output
 ❖ e.g. law, medicine, financial advice
AI’s Role in Education
My prompts to GPT-4

❖ I do not understand the physics of combustion. Please explain it to me via increasingly complex examples.

❖ Thanks. It makes sense. Please explain combustion in a car engine in more detail. I am a third year undergraduate student in Mechanical Engineering.

❖ Can you draw a simple diagram of a car engine?
Create a Lesson Plan

❖ Example: Create a lesson plan about interpolation

❖ My initial prompt:
You are a professor of numerical algorithms, and I am interested in learning about 1-D interpolation techniques over a set of points. Develop a series of lessons starting with the basics and progressively becoming more complex. After each lesson, propose a quiz (a mixture of true/false and multiple choice) to test my knowledge. Once I answer, provide the correct results.
My prompts

❖ You are a professor in Computer Science and an expert in the C programming language. I will ask you to create a series of quizzes with various characteristics. If you need equations, write them in Latex. Code should be delimited by three double quotes on either side of the code, and indents must be maintained. Do you understand?

❖ Please create a True/False quiz with 5 questions on the structure of single and nested for loops.

❖ Thanks. Create a quiz with three questions. In each question, provide a multiple choice question with three choices. Only one choice must be correct and the two others false.

❖ Now create a quiz with the following structure: create a code snippet, and ask the student what the code accomplishes. Also provide the correct answer. Concentrate on different aspects of function arguments.
Avoiding Cheating

❖ Step 1:
❖ Create a quiz of any type that Canvas can auto-grade

❖ Step 2:
❖ Put the quiz questions on paper provided to the students
❖ On canvas, only put the choices for the student to fill out

1. Does the sun radiate heat?
 - False

1. True
 - False

| Standard approach on Canvas | Suggested approach on Canvas | Paper test Student answers on Canvas |
Question 2 (points total):
Pipeline the circuit below. Optimize throughput (inputs processed per ms) and cost ($) You may add any number of the blocks in the circuit (a) Flipflops, edge-triggered interacers, an edge-triggered de-interacers (see figure below). No other modifications are permitted. The latency of flipflops, interacers, and de-interacers is 5ns. The cost of any item (whether already there or one you add) regardless of which item is $1. You have a total budget of $25 and the components already drawn below cost $6. Draw your answer on top of the diagram below if at all possible.

Total Points: 24.0 / 33.0 pts

1 +6.0 Correct interleaving concept
2 +6.0 Correct interleaving of multiple inputs
3 -3.0 Abused interleavers (too many outputs/inputs)
4 +6.0 Well-formed ("balanced" latch count)
5 +8.0 Correct extra stages for long-latency interleaved approach
6 -4.0

(c) Suppose that \(f(x) \) is a continuous function where \(\int_{-\infty}^{\infty} f(x) \, dx = 11 \).

For the following expression, evaluate it or state that there is not enough information:

\[
\int_{-\infty}^{\infty} \left(f(x) + x \right) \, dx + \int_{-\infty}^{\infty} f(x) \, dx
\]

\[
\int_{-\infty}^{\infty} f(x) \, dx + \sum_{i=1}^{n} \int_{-\infty}^{\infty} f(x) \, dx
\]

\[
11 + \sum_{i=1}^{n} 11 + 2 - \frac{1}{2} = 11 + 1.5 = 12.5
\]
AI: Embrace or Resist?

- Some schools tried to ban GPT technology
 - Doomed to failure
- AI tools are proliferating
- Technology improving at accelerated pace
- Students with AI usage expertise will get better jobs
- AI will allow students to learn more and faster
Practical Applications in Coding
Visual Studio Code

- Probably the best IDE for Python, Javascript, and Julia code
- Under heavy development
- Hundreds of Extensions, in particular
 - **Copilot**: plugin, free for students and faculty
 - **Genie**: Interface to multiple chatbots (next slide)
 - Interface to OpenAI via an **API Key**
Copilot

- Coding Assistant
 - Improves command-line completion
 - Can write entire functions
 - Use meaningful names (think of best programming practice)
 - Divide your problem in digestible steps
 - Strongly dependent on user input and previous code
- Operates on Github, Visual Studio Code (ctrl-cmd-V)
Multi-activation

Construct a layer that executes:

\[y = W_2\sigma(Wx + b_1) + W_3ReLU(W_4x + b_2) + b_3 \]
Construct a layer that executes:

\[y = W_2\sigma(Wx + b_1) + W_3\text{ReLU}(W_4x + b_2) + b_3 \]
Alternatives to Copilot

❖ IDX
❖ CodeGeex AI
❖ Tabbing

❖ They all have similar capabilities to Copilot
❖ Tools will greatly improve in the very near future
Ethical Considerations

- Copilot was trained in public repositories
- some code has copyrights
- Copilot does not provide sources for its suggestions
- Proposed approach:
 - For substantial code segments generated by AI state attribution
Creative Uses of LLM

- Drawing a house
- Uniformize the style of a grant written by multiple participants
- Generate latex for complex equations
- Remove grammatical errors in a paper
- Build citation lists
- Copy/paste a table from the Internet and translate it into a variety of formats
- Convert code from one language to another
- Generate quizzes for a class *(demonstrate with GPT4)*
- Generate a lesson plan to learn *(demonstrate with GPT4)*
Conclusion & Future Outlook

❖ 2022 was the year of Generative AI
 ❖ Chatbots
 ❖ Image generators
❖ 2023 and beyond
 ❖ Bigger general models
 ❖ Speculation is that GPT-5 will be released in 1-2 years
 ❖ Multimodal AIs that combine text, images, video in both directions
Bold Predictions

❖ AI coding will improve.
❖ Easier idea-to-code conversion.
❖ Focus more on algorithms.
❖ Fewer AI hallucinations.
❖ Prioritize the "what" over the "how".
❖ Manipulate math as easily as natural language.
❖ Improved presentation software
❖ Coding language importance will diminish.
❖ Eliminate the need for a shared oral language.
❖ Embrace the change!
The end

Questions?