Growth, Income Distribution and Policy Implications of Automation

Manoj Atolia, Morgan Holland and Jonathan Kreamer

Florida State University University of Wyoming

October 11, 2023

Research and Computing Center, FSU

1/44

Automation: the question

- Growing public concern about automation.
 - Labor-substituting technological progress.
- Concerns about distributional consequences.
 - Growing inequality? Declining labor share?
- Implications for long-run growth.
 - What happens when all tasks can be automated?
 - Can this even happen? Under what conditions?
- Discussion of policy responses.
 - Proposals for Universal Basic Income (UBI).
 - Or other transfer programs (need-based; industry-specific).

Figure: Robots on Assembly Line

Figure: Manufacturing Employment and Output

figure shows the labor share and its linear trend for the four largest economies in the world from 1975.

Figure: Labor share (Karabarbounis & Neiman 2014)

Manoj Atolia, Morgan Holland and Jonathan Growth, Income Distribution and Policy Impli

Our approach

Model:

- Task-based model of automation.
 - Tasks can be done by labor or capital.
- Entrepreneurs and workers.
 - Focus on distributional implications.

Analysis:

- Examine consequence of an automation episode.
 - Possibility of complete automation.
 - Implications for income shares.
- Then look at political economy implications.
 - Worker-dominated government.
 - Characterize policy in response to automation episode.

Literature

- Empirical results:
 - Task/skill-biased technical change (Autor et al 2003, Acemoglu Autor 2011).
 - Recent decline in labor share (Karabarbounis & Neiman 2014, Autor & Salomons 2018).
- Also several theoretical models of automation:
 - Acemoglu and Restrepo (2018), Aghion, Jones, Jones (2019).
 - Korinek Stiglitz (2019 book chapter) focuses on distribution
 - Prettner (2019) looks at growth.
- Optimal capital taxation (Judd 1985, Chamley 1986, Lansing 1999, Straub Werning 2020).

Model

- Continuous time. Suppress time arguments for convenience.
- Two kinds of households: workers and entrepreneurs.
- Workers: cannot own capital; supply labor. Preferences:

$$\int_0^\infty e^{-\gamma t} U\left(C_w, L\right) dt$$

Consumption and labor supply:

$$C_w = \left(1 - \tau^\ell\right) wL + T_w$$
$$-U_L\left(C_w, L\right) \le \left(1 - \tau^\ell\right) wU_C\left(C_w, L\right)$$

Workers & Entrepreneurs

• Entrepreneuers: own capital. Choose investment. Preferences:

$$\int_0^\infty e^{-\rho t} u\left(c_e\right) dt$$

• Assume $\rho \leq \gamma$ (entrepreneurs relatively patient). Decisions:

٠

$$\begin{split} \dot{K} + c_e &= r^k K, \quad \text{where } r^k = \left(1 - \tau^k\right) r - \delta \\ \frac{\dot{c}_e}{c_e} &= \frac{r^k - \rho}{\varphi}, \quad \text{where } \varphi = -\frac{u''\left(c_e\right) \cdot c_e}{u'\left(c_e\right)} \end{split}$$

Production

• CES production technology (related to Acemoglu and Restrepo 2018):

$$Y = \left[\int_0^1 \left(y\left(i\right)\right)^{1-\frac{1}{\sigma}} di\right]^{\frac{\sigma}{\sigma-1}}$$

• Task *i* can be performed by capital or human labor:

$$y(i) = a(i) k(i) + b(i) \ell(i)$$

- Assumption: a(i)/b(i) weakly decreasing in i; $k(i), \ell(i) \ge 0$.
 - ▶ Implies cutoff task α , s.t. tasks $i \leq \alpha$ done by capital, $i > \alpha$ by labor.

Aggregate Representation of Production (Prop. 1)

• Under optimal production plan, output is:

$$Y(K,L,\alpha) = \left[\alpha^{\frac{1}{\sigma}} \left(A(\alpha)K\right)^{1-\frac{1}{\sigma}} + (1-\alpha)^{\frac{1}{\sigma}} \left(B(\alpha)L\right)^{1-\frac{1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

• where $K = \int_0^\alpha k(i) \, di$, $L = \int_\alpha^1 \ell(i) \, di$, and:

$$A(\alpha) = \left[\frac{1}{\alpha} \int_0^\alpha (a(i))^{\sigma-1} di\right]^{\frac{1}{\sigma-1}}, B(\alpha) = \left[\frac{1}{1-\alpha} \int_\alpha^1 (b(i))^{\sigma-1} di\right]^{\frac{1}{\sigma-1}}$$

• and where α is implicitly defined by:

$$\begin{cases} \frac{a(i)}{b(i)} \ge q(\alpha, K, L) & i < \alpha \\ \frac{a(i)}{b(i)} \le q(\alpha, K, L) & i > \alpha \end{cases} \qquad q(\alpha, K, L) = \frac{F_K}{F_L} = \frac{r}{w} \end{cases}$$

Aggregate Representation of Production

Under optimal production plan, output is:

$$Y = \left[\alpha^{\frac{1}{\sigma}} (AK)^{1 - \frac{1}{\sigma}} + (1 - \alpha)^{\frac{1}{\sigma}} (BL)^{1 - \frac{1}{\sigma}}\right]^{\frac{\sigma}{\sigma - 1}}$$

- Technical change can have two effects:
 - **1** Traditional technological progress: increase A. Intensive margin.
 - **2** Automation: increase α . Extensive margin.

Government

• The government budget constraint:

$$T_w = \tau^\ell w L + \tau^k r K - G$$

- For now, assume:
 - Fixed tax rates (τ^{ℓ}, τ^k) .
 - Zero government spending G = 0.
- Transfer to workers may change over time as wL and rK change.

Existence of Steady State vs. Sustained Growth

- First result: steady state may not exist!
 - Possible to have sustained growth through capital accumulation alone.
 - Call this full automation scenario.
- Intuition: as $L/K \rightarrow 0$, production function approaches AK.
 - ► If "A" sufficiently high, continuous growth occurs.
- Under full automation:
 - Labor share goes to 0.
 - Generally w > 0. L > 0 or L = 0 both possible.

Existence of Steady State... (Prop. 2)

Proposition

Let:

$$A(1) = \left[\int_0^1 (a(i))^{\sigma-1} di\right]^{\frac{1}{\sigma-1}}$$
$$r^* = \frac{\rho+\delta}{1-\tau^k}$$

Then:

If A(1) > r*, the economy achieves sustained growth in the long run.
If A(1) < r*, the economy reaches a steady state with L > 0.
If A(1) = r*, then economy grows as long as L > 0. If L = 0, the economy stops growing at that point.

Existence of Steady State... (Corr. 1)

Corollary

(i) If $a(i) > r^*$ for all i, then $A(1) > r^*$ and there is sustained growth. (ii) If $\sigma < 1$ and a(i) = 0 for a positive measure of tasks, then $A(1) = 0 < r^*$ and no long-run growth is possible. (iii) If $\sigma > 1$, a sufficient condition for sustained growth is that there exists m such that for all $i \in [0, m]$ we have $a(i) \ge m^{\frac{1}{1-\sigma}}r^*$.

- $\sigma < 1$ means Labor is necessary for production.
- This plus no full automation is sufficient condition for steady state.
 - Not necessary.

Implication for Automation

- Result implies technical progress can make qualitative difference.
- As long as $A(1) < r^*$, technological progress has "typical" results.
- But if A(1) is pushed above r^* , reach different regime.
 - Sustained growth is possible through accumulation of capital.
 - Labor share goes to zero in long run.

Special case: stepwise productivity

- Now let's focus on a special case: stepwise productivity.
- Suppose that a(i) satisfies:

$$a\left(i\right) = \begin{cases} a & i \in [0, \bar{\alpha}] \\ 0 & i > \bar{\alpha} \end{cases}$$

- Labor productivity is b = 1 for all i. Assume $a > r^*$.
- Now can cleanly distinguish two types of technological progress:
 - ► Traditional technical progress: increase in *a*.
 - Labor-substituting technical progress (automation): increase in $\bar{\alpha}$.

Effects of Technical Progress

- Consider long run effects of technological progress.
 - Comparative statics of steady state.
- Traditional technological progress: Marginal increase in *a* (Corr. 2):
 - Raises wage w.
 - Raises labor share if $\sigma < 1$; lowers $\sigma > 1$; constant $\sigma = 1$.
- Automation: Marginal increase in $\bar{\alpha}$ (Corr. 3):
 - Raises wage w.
 - Lowers labor share.

Wage Decline

- Previous results hold for stepwise capital productivity.
 - Automation always raises wage.
- But does this always hold?
 - No! Possible for automation to lower worker wages, even in the long run.
- This never happens with constant worker task productivity b(i).
 - Can happen when workers are more productive at tasks that get automated than remaining tasks.

Other Results: Wage Decline

• For example, suppose capital and labor task productivity satisfy:

$$b(i) = \begin{cases} b_m & i \in [0, \bar{\alpha}_1] \\ b_1 & i \in (\bar{\alpha}_1, 1] \end{cases} \quad a(i) = \begin{cases} 1 & i \in [0, \bar{\alpha}_1] \\ 0 & i > \bar{\alpha} \end{cases}$$

- Suppose initially we have $\bar{\alpha} = \bar{\alpha}_0 < \bar{\alpha}_1$, and then $\bar{\alpha}$ increases to $\bar{\alpha}_1$.
- Steady state wage declines iff (Prop. 4):

$$\frac{b_m}{b_1} > \left[\frac{(a/r^*)^{1-\sigma} - \bar{\alpha}_1}{1 - \bar{\alpha}_1}\right]^{\frac{1}{1-\sigma}}$$

where RHS is greater than 1 as $a > r^*$.

Majority Voting

- Now suppose policy set by majority vote; workers in the majority.
- For simplicity, assume entrepreneurs have log utility:

$$u\left(c_e\right) = \log\left(c_e\right)$$

• Then entrepreneur consumption follows simple rule:

$$c_e = \rho K$$

• Suppose government spending is a fixed share of GDP:

$$G = \omega Y$$

• Substitute these into resource constraint to obtain:

$$\dot{K} = (1 - \omega) F(K, L) - \delta K - \rho K - C$$

Planner's Problem

• Planner sets path of $\left\{ \tau^L, \tau^K \right\}$ to maximize worker welfare:

$$\int_0^\infty e^{-\gamma t} U\left(C_w, L\right) dt$$

Subject to constraint:

$$\dot{K} = (1 - \omega) F(K, L) - \delta K - \rho K - C_w$$

• Plus non-negativity constraint on labor, $L \ge 0$.

• One state: K. Two controls: $\{C, L\}$.

Optimality conditions

• Optimality conditions are:

$$\lambda = U_C (C_w, L)$$
$$-U_L (C_w, L) \le \lambda (1 - \omega) F_L (K, L)$$
$$-\frac{\dot{\lambda}}{\lambda} = (1 - \omega) F_K (K, L) - \rho - \delta - \gamma$$

Labor income tax

• We have labor condition:

$$-U_L(C_w,L) \le (1-\omega) U_C(C_w,L) \cdot F_L(K,L)$$

• Compare with equilibrium condition:

$$-U_L(C_w,L) \le \left(1 - \tau^\ell\right) U_C(C_w,L) \cdot F_L(K,L)$$

• This implies constant labor income tax:

$$\tau^\ell = \omega$$

• If $\omega = 0$ (no government spending), then zero labor income tax.

Capital Tax

• The expressions above imply that optimal capital taxation satisfies:

$$1 - \tau^{k} = (1 - \omega) \left(\frac{\dot{K}/K + \delta + \rho}{\rho + \gamma + \delta - \dot{\lambda}/\lambda} \right)$$

In steady state:

$$\tau^k = \frac{\gamma + \omega \left(\rho + \delta\right)}{\rho + \delta + \gamma} = \omega + \frac{(1 - \omega)\gamma}{\rho + \delta + \gamma} > \omega = \tau^\ell$$

Independent of technology. Always positive and larger than labor tax.

• Away from steady state, decreasing in $\dot{K}/K,$ increasing in $\dot{C}/C\propto -\dot{\lambda}/\lambda.$

Existence of Steady State vs. Sustained Growth (Prop. 5)

• A steady state exists as long as:

$$A\left(1\right) < \frac{\rho + \delta + \gamma}{1 - \omega} = r^*$$

• Sustained growth through accumulation of capital occurs when:

$$A\left(1\right) > \frac{\rho + \delta + \gamma}{1 - \omega} = r^{*}$$

- (Equals is a knife-edge case. Growth rate approaches 0 asymptotically.)
- Note that the steady state capital tax rate can be written as:

$$\tau_{ss}^k = \omega + \frac{\gamma}{r^*}$$

Growth with CRRA utility

- Suppose $A(1) > \frac{\rho + \delta + \gamma}{1 \omega}$ so there is sustained growth.
- Suppose workers have CRRA (φ) utility.
- Balanced growth path (BGP) exists if:

$$\varphi > 1 - \frac{\gamma}{\left(1 - \omega\right) A\left(1\right) - \delta - \rho}$$

• Condition always holds when $\varphi \geq 1$.

Balanced Growth Path (Prop. 5)

Growth rate on BGP will be:

$$g = \frac{(1-\omega) A(1) - \delta - \rho - \gamma}{\varphi} > 0$$

Capital tax rate on BGP is:

$$\tau_{bgp}^{k} = \omega + \frac{\left(\varphi - 1\right)g + \gamma}{A\left(1\right)}$$

- If log utility ($\varphi=1)$: $\tau_{bgp}^{k}=\omega+\frac{\gamma}{A\left(1\right)}$

Robot Taxes

- Is it ever optimal to tax robots specifically?
 - Suppose we partition tasks into two types: 1 and 2.
 - Can set different tax rates on capital income from each type.
- Then can express production function as

$$F\left(K_1, K_2, L\right)$$

• Production satisfies:

$$\left(1-\tau_1^k\right)F_{K_1} = \left(1-\tau_2^k\right)F_{K_2}$$

• By varying tax rates, planner can effectively choose both K_1 and K_2 .

Robot Taxes

• Planning problem: maximize worker welfare subject to:

$$\dot{K} = F(K - K_2, K_2, L) - \delta K - \rho K - C_w$$

- K is state. (L, C, K_2) are choice variables. $K_2 \in [0, K]$.
- FOC wrt K_2 gives us:

$$F_{K_1} = F_{K_2}$$

unless non-negativity constraints bind.

- Implies $\tau_1^k = \tau_2^k$. No robot taxes.
- Result generalizes to arbitrary partitions of tasks.

Quantitative Exercise

- Now we will look at a quantitative analysis of an episode of automation.
- Workers have log log utility: $U(C, L) = \log(C) + \phi \log(1 L)$
- Piecewise technology:

$$a\left(i\right) = \begin{cases} a & i \in [0,\bar{\alpha}] \\ 0 & i > \bar{\alpha} \end{cases}$$

Quantitative Exercise

ρ	γ	δ	ω	ϕ	a	b	$\bar{\alpha}$	$ au^k$	$ au^\ell$
0.04	0.06	0.1	0.11	1.4	0.5	1	0.5(0.25)	0.36	0.23

- Consider two values of CES across tasks: $\sigma = 0.8$ and $\sigma = 1.2$.
- Initial $\bar{\alpha}$ is 0.5 for $\sigma = 0.8$, and 0.25 for $\sigma = 1.2$.
- Steady state exists under these parameters.
- Gradual increase in $\bar{\alpha}$, calibrated to double steady state output.
- Consider under both a fixed tax regime, and under majority voting.

	Initial ($\sigma=0.8$)	Auto. (0.8)	Initial (1.2)	Auto. (1.2)
Y	1.195	2.389	2.159	4.318
K/Y	1.937	2.506	1.929	2.398
C_w/Y	0.619	0.539	0.620	0.554
c_e/Y	0.077	0.100	0.077	0.096
wL/Y	0.576	0.452	0.578	0.475
rK/Y	0.424	0.548	0.422	0.525
T_w/Y	0.175	0.186	0.175	0.186
T_w/Y adj	0.106	0.137	0.106	0.131
$\bar{\alpha}$	0.500	0.647	0.250	0.311
τ^k	0.360	0.360	0.360	0.360
τ^{ℓ}	0.230	0.230	0.230	0.230

Table: Steady states before and after automation with fixed taxes.

Figure: Automation episode with fixed tax rates and $\sigma = 0.8$.

Figure: Automation episode with fixed tax rates and $\sigma = 1.2$.

36 / 44

Majority Voting

- Now consider the same episode of automation under majority voting.
- Start at same steady state as before
- Then two things happen at the same time:
 - An episode of automation (same as before).
 - Policy starts to follow majority voting.

	Initial ($\sigma=0.8$)	Auto. (0.8)	Auto. $+$ M.V. (0.8)
Y	1.195	2.389	2.530
K/Y	1.937	2.506	2.452
C_w/Y	0.619	0.539	0.547
c_e/Y	0.077	0.100	0.098
wL/Y	0.576	0.452	0.449
rK/Y	0.424	0.548	0.551
T_w/Y	0.175	0.186	0.147
T_w/Y adj	0.106	0.137	0.147
$\bar{\alpha}$	0.500	0.647	0.647
$ au^k$	0.360	0.360	0.377
τ^{ℓ}	0.230	0.230	0.110

Table: Steady states: automation + majority voting

Figure: Automation episode under majority voting ($\sigma = 0.8$)

	Initial ($\sigma = 1.2$)	Auto. (1.2)	Auto. + M.V. (1.2)
Y	2.159	4.318	4.548
K/Y	1.929	2.398	2.322
C_w/Y	0.620	0.554	0.565
c_e/Y	0.077	0.096	0.093
wL/Y	0.578	0.475	0.478
rK/Y	0.422	0.525	0.522
T_w/Y	0.175	0.186	0.139
T_w/Y adj	0.106	0.131	0.139
$\bar{\alpha}$	0.250	0.311	0.311
$ au^k$	0.360	0.360	0.377
τ^{ℓ}	0.230	0.230	0.110

Table: Steady states: automation + majority voting

Figure: Automation episode under majority voting ($\sigma = 1.2$)

Welfare Gains from automation

- Let's look at welfare gains from automation.
 - Calculated in consumption equivalent terms.
- Welfare gains from automation ($\sigma = 0.8$):
 - Fixed taxes: 24.6% for workers; 57.7% for entrepreneurs.
 - Majority voting: 26.1% for workers; 84.5% for entrepreneurs.
- Welfare gains from automation ($\sigma = 1.2$):
 - Fixed taxes: 29.4% for workers; 49.0% for entrepreneurs.
 - Majority voting: 30.6% for workers; 72.5% for entrepreneurs.

Welfare Gains from automation

- Observations:
 - Significant welfare gains for both workers and entrepreneurs.
 - However, gains proportionally greater for entrepreneurs.
 - Majority voting increases welfare gains for both.
 - However, entrepreneurs benefit a lot more.
- Counterintuitive!
 - Majority voting is set to maximize worker welfare only.
 - Yet entrepreneurs end up benefiting more!
- Intuition:
 - Optimal to lower capital taxes during transition.
 - Benefits workers a little, entrepreneurs a lot.

Conclusions

• Automation differs from traditional technological progress:

- Can cause long-run sustained growth.
- Lowers labor share, raises wages (in piecewise case).
- Effect depends on σ.
- When workers have political power and there is a UBI:
 - Long run capital tax independent of automation/technology.
 - Transfers increase with automation in absolute and relative terms.
 - Lower capital taxes during automation episode, higher in long run.
- Both workers and entrepreneurs benefit from majority voting policy.
 - But entrepreneurs benefit more.