
Computing Centroidal Voronoi
Tessellations on the GPU

Evan F. Bollig, Advisor: Gordon Erlebacher
Department of Scientific Computing, Florida State University

bollig@scs.fsu.edu

Abstract

I N the last decade, commodity Graphics Processing Units
(GPUs) specialized for 2D and 3D graphics have dramati-

cally changed in purpose from purely video game hardware
to something akin to their general purpose counterpart, the
CPU. Currently capable of near teraflop speeds with giga-
bytes of on-board memory, GPUs have transformed from
accessory hardware for a young generation to general pur-
pose coprocessors for scientific computation.

This poster presents results from the first (to our knowl-
edge) implementation to compute centroidal Voronoi tes-
sellations of manifolds entirely on the GPU. To complete
these tasks, a highly efficient flooding algorithm is used
to produce the Voronoi tessellation, while a regularized
sampling approach is employed to compute centroids of
Voronoi regions. We consider simple surfaces (2-manifolds)
of the form f (u, v) → (u, v, z(u, v)) partitioned according
to Euclidean-based metrics, with the generating points up-
dated by a deterministic Lloyd’s method.

1. Definitions

Definition 1 {Vi}ki=1 is a tessellation of the bounded open
set Ω ⊆ RN if the following are satisfied:
• Vi ∩ Vj = ∅ for i 6= j

• ∪k
i=1Vi = Ω

Definition 2 Given a set of seeds {si}ki=1 ∈ Ω, the set
{Vi}ki=1 is Voronoi tessellation of Ω if
Vi = {x ∈ Ω | dist(x, si) < dist(x, sj) for i, j = 1, .., k and

i 6= j}
Note that we call Vi a Voronoi region of Ω.

Definition 3 Given the tessellation {Vi}ki=1 of Ω ⊆ RN and
a general density function ρ(x), the mass centroid (center
of mass) of each region Vi is

zi =

∫
Vi

xρ(x)dx∫
Vi

ρ(x)dx
.

If
zi = si for i = 1, ..., k,

then {Vi}ki=1 form a centroidal Voronoi tessellation (CVT)[1],
which minimizes the energy

F ({zi, Vi}ki=1) =
∑k

i=1

∫
Vi

ρ(x) dist(x, zi)
2dx

Figure 1: (left) Voronoi vs. (right) Centroidal Voronoi Tes-
sellation.

Note:
• For the manifold M centroids may not lie on surface
• The projection of zi (zc

i) is the energy minimizer on M [2]
Definition 4 When

zc
i = si for i = 1, ..., k

the tessellation is a constrained centroidal Voronoi tessella-
tion (CCVT)

Input: a surface M, a density function ρ(x) defined for all x ∈M, and a positive
integer k;

Output: the set of constrained centroids {zc
i }k

i=1

Randomly choose an initial set of seed points {zi}k
i=1 on M according to ρ(x);1

Randomly select a point y ∈M according to ρ(x);2

Find the closest zi ∈ {zi}k
i=1 to y according to dist(y, zi);3

Update4

z′
i ←

jizi + y

ji + 1
, ji ← ji + 1, and zi = proj(z′

i);

where proj is the projection of z′
i to the surface as discussed above;

if {zi}k
i=1 does not satisfy convergence criterion then5

goto step 26

end7

return {zc
i }k

i=1 := {zi}k
i=1;8

Algorithm 2.1: MacQueen’s method for CCVTs

Input: a surface M, a density function ρ(x) defined for all x ∈M, and a positive
integer k;

Output: the set of constrained centroids {zc
i }k

i=1

Randomly choose an initial set of seed points {zi}k
i=1 on M according to ρ(x);1

Construct the Voronoi tessellation of M based on {zi}k
i=1;2

Determine the mass centroids {zi}k
i=1 of the Voronoi regions {Vi}k

i=1;3

Update4

zi = proj(zi);

where proj is the projection of z′
i to the surface as discussed above;

if {zi}k
i=1 does not satisfy convergence criterion then5

goto step 26

end7

return {zc
i }k

i=1 := {zi}k
i=1;8

Algorithm 2.2: Lloyds method for CCVTs

For both MacQueen’s algorithm and Lloyd’s algorithm, termination is dependent on

the satisfaction of convergence criterion. The most obvious criterion based on the definitions

above is that the CVT energy, F (·), be minimized within a specified tolerance. More practical

perspectives require only that a maximum number of iterations complete, or that the rate

of change in energy or distance between seeds be sufficiently small.

Minimizing F (·) on a uniformly dense domain results in equally spaced seeds. To quantify

the uniformity of seed placement, Nguyen [10] provides various measures including the

8

2.3 Constrained Centroidal Voronoi Tessellation

Following [6], the mass centroids of Voronoi regions on a manifoldM⊂ RN do not necessarily

lie on the surface. However, it has been demonstrated that analogous solutions to the CVT

problem exist forM, if, instead of mass centroids coinciding with seed points, the constrained

mass centroids coincide [6]. In other words, let the projection of zi onto the manifold be the

constrained mass centroid, zc
i . Then,

zc
i = zi, for i = 1, ..., k

where zc
i is the solution to the following problem:

min
z∈M

Fi(z), where Fi(z) =

∫

Vi

ρ(x) dist(x, z)2dx (2.5)

and the integral is understood as standard surface integral of Vi [6].

For their examples, Du et al. [6] derive exact functions for projection of zi to zc
i . This

thesis uses an iterative approximation described in Chapter 5.

2.4 Algorithms to Compute CCVT

Up to this point, no algorithms have been mentioned for computing centroidal Voronoi

tessellations. There are two classes of algorithms: probabilistic and deterministic [4].

Probabilistic methods approximate mass centroids by randomly sampling M according to

the density function ρ(x), whereas deterministic methods require the explicit generation of

the Voronoi tessellation V ({si}k
i=1) [4]. This section presents one algorithm of each type

described originally by Du et al. [6] for computing CCVTs.

The most popular probabilistic method is MacQueen’s method. Algorithm 2.1 shows Du

et al.’s variant, the MacQueen’s method for CCVTs [6]. MacQueen’s method samples the

domain and updates only one zi per iteration. The primary benefit of MacQueen’s method

(and other probabilistic methods described in [4]) is that there is no need to explicitly

generate the Voronoi tessellation of M in order to generate {zc
i }k

i=1. This is offset by its slow

rate of convergence [4, 6].

Convergence rates are greatly improved with Lloyd’s method, which is deterministic.

Algorithm 2.2 provides the variant for CCVTs described in [6]. At every iteration the

Voronoi tessellation of M is explicitly computed, and the cell centroids evaluated.

7

Figure 2: (left) Constrained Centroidal Voronoi Tessellation
of Manifold f (u, v) = (u, v, e−(2u−1)2−(2v−1)2). (right) Cen-
troids are ”constrained” (projected) to the surface at each
iteration of Lloyd’s method.

2. Why Compute on GPUs?

RECENT years have shown tremendous growth in GPU
vs. CPU performance. At the same time, the new

hardware has been joined by increasingly powerful graphics
programming languages for general purpose computation.
The latest language, CUDA, allows development of parallel
kernels in C without required knowledge of graphics APIs
like OpenGL.

'00 '01 '02 '03 '04 '05 '06 '07 '08

0

100

200

300

400

500

Fl
oa

tin
g-

Po
in

t O
pe

ra
tio

ns
 (F

LO
Ps

) p
er

 S
ec

on
d

(In
 B

illi
on

s)

Core 2 Extreme

Pentium 4
Pentium III

Tesla
C870

NV30
NV40 Core 2

G70

G71

G80

NVIDIA CUDAComparable FLOPS
not Recorded

TEXT GPU
Release

TEXT CPU
Release

TEXT GPU Programming
Language Release

Sh/RapidMind

BrookGPU

Year

GLSL

Cg/HLSL

RTSL

GTX 280
(933 GFLOPs)900

600

700

800

Figure 3: Approximate GPU vs CPU performance growth
and language releases over time. The dramatic growth in
performance demands consideration of GPU as a compu-
tational co-processor

3. GPU Computing

PROGRAMMING for GPUs requires knowledge of the hier-
archical memory, scope of data sharing, and penalties

incurred by accesses at each level.

Registers

Shared Memory

Registers

Multiprocessor 1
Thread Thread

Registers

Shared Memory

Registers

Global Device Memory

Multiprocessor N
Thread Thread

...

Texture Cache Texture Cache

Constant Cache Constant Cache

Local
Memory

Local
Memory

Local
Memory

Local
Memory

{
O(10)

O(100)

O(1)

{
{

CPU

Figure 4: GPUs have multiple levels of memory with in-
creasing access penalties. Communication with the CPU is
more costly than global device memory access and should
be avoided.

DC

A B

DC

A B

DC

A B

DC

A B

DC

A B

DC

A B

K ()

MP1

MP2

MP3

...

Figure 5: Problems are decomposed into blocks of threads.
Multiprocessors on the GPU apply kernels (programs) to
blocks of threads in parallel.

4. Algorithms

GENERATING CCVTs requires an iterative algorithm:
Lloyd’s Method.

1. Generate Voronoi tessellation using current seeds
2. Calculate centroids of each Voronoi region
3. Project centroids onto M
4. Update current seeds to the projected centroids

Repeat 1-4 until stopping criterion is satisfied (i.e., energy
is minimized or maximum iteration is reached).

Algorithm 1: Deterministic Lloyd’s Method.

We generate the Voronoi tessellation with a fast,
O(N2log(N)) (N is one-sided domain resolution), propaga-
tion method called Jump Flooding (Variant 2 + JFA)[3].

Centroids are calculated using a custom algorithm that uni-
formly samples Voronoi regions with masking in 16×16 sam-
ples we call tiles. A dynamic edge scaling parameter (in-
dependently variable for each region) controls the spacing
between samples according to the percentage of threads

masked on the previous iteration. The complexity of this al-
gorithm is O(t2S) where t is number of tiles in one direction
and S is number of seeds.

(a) Iter 1 (b) Iter 2 (c) Iter 3

(d) Iter 4 (e) Iter 5 (f) Iter 6

(g) Iter 7 (h) Zoom Subsampled Grid (i) Smooth Full Grid

Figure 4.3: Example run of the implemented Jump Flooding ”Variant 2 + JFA+1”. Domain
resolution is 256× 256, with 30 seeds randomly selected with uniform density.

23

Figure 6: Jump Flooding Variant 2 + JFA. A Voronoi tes-
sellation is formed in log(N2) passes by GPU then scaled to
twice the resolution and corrected with a final pass.

Figure 7: (left) Uniform sampling of Voronoi regions with
masking. (right) Sample spacing is independently variable
for each region.

5. Results

0 200 400 600 800 10003

4

5

6

7

8 x 10−3

Iteration

Energy (F(zi,Vi))

Figure 8: f (u, v) = (u, v,
√

1.1− (2u− 1)2 − (2v − 1)2):
1000 iterations, 1024 × 1024 resolution, 3 × 3 tiles and dy-
namic edge scaling. F ({zi, Vi}) = 3.17 ∗ 10−3

We compare our centroid calculation to the standard his-
togram algorithm used for centroid calculation on the CPU.
Increasing resolutions have no effect on centroid calcula-
tion. With 4 × 4 tiles, the GPU is faster for 2000 seeds or
less.

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

200

A
v
e
ra

g
e

T
im

e
(m

s)

of Seeds

1x1 Tiles
2x2 Tiles
4x4 Tiles
8x8 Tiles
CPU

0 500 1000 1500 2000
10−2

10−1

100

101

102

103

A
v
e
ra

g
e

T
im

e
(m

s)

Texture Resolution

1x1 Tiles
2x2 Tiles
4x4 Tiles
8x8 Tiles
CPU

Figure 9: Average times for (left) varying number of seeds
(1024×1024 resolution) and (right) varying texture resolution
(30 seeds) for our centroid calculation algorithm.

References

[1] DU, Q., FABER, V., AND GUNZBURGER, M. Centroidal voronoi tessellations: Ap-
plications and algorithms. SIAM Rev. 41, 4 (1999), 637–676.

[2] DU, Q., GUNZBURGER, M. D., AND JU, L. Constrained centroidal voronoi tessel-
lations for surfaces. SIAM J. Sci. Comput. 24, 5 (2003), 1488–1506.

[3] RONG, G., AND TAN, T.-S. Variants of jump flooding algorithm for computing
discrete voronoi diagrams. In ISVD ’07: Proceedings of the 4th International Sym-
posium on Voronoi Diagrams in Science and Engineering (Washington, DC, USA,
2007), IEEE Computer Society, pp. 176–181.

Dept. of Scientific Computing, Computational Expo ’09, 14 April 2009, Tallahassee, FL

