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‘ Abstract I

N the last decade, commodity Graphics Processing Units

(GPUs) specialized for 2D and 3D graphics have dramati-
cally changed in purpose from purely video game hardware
to something akin to their general purpose counterpart, the
CPU. Currently capable of near teraflop speeds with giga-
bytes of on-board memory, GPUs have transformed from
accessory hardware for a young generation to general pur-
pose coprocessors for scientific computation.

This poster presents results from the first (to our knowl-
edge) implementation to compute centroidal Vioronoi tes-
sellations of manifolds entirely on the GPU. To complete
these tasks, a highly efficient flooding algorithm is used
to produce the Voronoi tessellation, while a regularized
sampling approach is employed to compute centroids of
Voronoi regions. We consider simple surfaces (2-manifolds)
of the form f(u,v) — (u,v,z(u,v)) partitioned according
to Euclidean-based metrics, with the generating points up-
dated by a deterministic Lloyd’s method.

‘ 1. Definitions |

Definition 1 {V} | Is a tessellation of the bounded open
set Q) C RY jf the following are satisfied:

o ViNV;=0fori#j
UM V=0

Definition 2 Given a set of seeds {s;}}_, € Q, the set
{V} _ Is Voronoi tessellation of ) if
=1z €Q | dist(z,s;) < dist(z,s;) fori,j=1,..,k and
L # )

Note that we call V; a Voronoi region of ..

Definition 3 Given the tessellation {V;}¥_, of @ C R and
a general density function p(x), the mass centroid (center
of mass) of each region V; is

fv rp(x)dx

fvp

If
z;=s;fori=1,.. k,

then {V;}%_, form a centroidal Voronoi tessellation (CVT)[1],
which minimizes the energy

F({z, V;} ) =S | Jy, plx) dist(x %) dx

Figure 1: (left) Voronoi vs. (right) Centroidal Vioronoi Tes-
sellation.

Note:
e For the manifold M centroids may not lie on surface
e The projection of z; (z7) is the energy minimizer on M [2]
Definition 4 When
zi=sifori=1,..k

the tessellation is a constrained centroidal Voronoi tessella-
tion (CCVT)

Figure 2: (left) Constrained Centroidal Voronoi Tessellation
of Manifold f(u,v) = (u,v,e”2u=V"=2v=1% " tright) Cen-
troids are "constrained” (projected) to the surface at each
iteration of Lloyd’s method.
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‘ 2. Why Compute on GPUs? |

RECENT years have shown tremendous growth in GPU
vs. CPU performance. At the same time, the new
hardware has been joined by increasingly powerful graphics
programming languages for general purpose computation.
The latest language, CUDA, allows development of parallel
kernels in C without required knowledge of graphics APls
like OpenGL.
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Figure 3: Approximate GPU vs CPU performance growth
and language releases over time. The dramatic growth in
performance demands consideration of GPU as a compu-
tational co-processor

‘ 3. GPU Computing |

ROGRAMMING for GPUs requires knowledge of the hier-
archical memory, scope of data sharing, and penalties
incurred by accesses at each level.
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Figure 4: GPUs have multiple levels of memory with in-
creasing access penalties. Communication with the CPU is
more costly than global device memory access and should
be avoided.

Figure 5: Problems are decomposed into blocks of threads.
Multiprocessors on the GPU apply kernels (programs) to
blocks of threads in parallel.

‘ 4. Algorithms |

ENERATING CCVTs requires an iterative algorithm:
Lloyd’s Method.

1. Generate Voronoi tessellation using current seeds
2. Calculate centroids of each Voronoi region

3. Project centroids onto M

4. Update current seeds to the projected centroids

Repeat 1-4 until stopping criterion is satisfied (i.e., energy
IS minimized or maximum iteration is reached).

Algorithm 1: Deterministic Lloyd’s Method.

We generate the Voronoi tessellation with a fast,
O(NZlog(NV)) (N is one-sided domain resolution), propaga-
tion method called Jump Flooding (Variant 2 + JFA)[3].

Centroids are calculated using a custom algorithm that uni-
formly samples Voronoi regions with masking in 16 x 16 sam-
ples we call tiles. A dynamic edge scaling parameter (in-
dependently variable for each region) controls the spacing
between samples according to the percentage of threads

masked on the previous iteration. The complexity of this al-
gorithm is O(¢2S) where t is number of tiles in one direction
and S is number of seeds.
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Figure 6: Jump Flooding Variant 2 + JFA. A Voronoi tes-
sellation is formed in log(%) passes by GPU then scaled to
twice the resolution and corrected with a final pass.

Figure 7: (left) Uniform sampling of Voronoi regions with
masking. (right) Sample spacing is independently variable
for each region.

‘ 5. Results |
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Figure 8: f(u,v) = (u,v,v/1.1—(2u—1)2—(2v—1)?):
1000 iterations, 1024 x 1024 resolution, 3 x 3 tiles and dy-
namic edge scaling. F({z;,V;}) = 3.17% 1073

We compare our centroid calculation to the standard his-
togram algorithm used for centroid calculation on the CPU.
Increasing resolutions have no effect on centroid calcula-
tion. With 4 x 4 tiles, the GPU is faster for 2000 seeds or
less.
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Figure 9: Average times for (left) varying number of seeds
(1024 x 1024 resolution) and (right) varying texture resolution
(30 seeds) for our centroid calculation algorithm.
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