Numerical Investigation on Asymptotic Features of Model Selection Criteria

Dan Lu (dI07f@fsu.edu) and Ming Ye (mye@fsu.edu)
Department of Scientific Computing, Florida State University, Tallahassee, FL 32306

1. INTRODUCTION

Using a synthetic example of four geostatistical models (including the true or data-generating model), this study is to investigate:

- Accuracy of BIC and KIC
- Asymptotic features of the model selection criteria, AIC, AICc, BIC, and KIC,
- Fisher information matrix's role in model selection;
- Sensitivity of posterior to prior model probability.

2. THEORETICAL BACKGROUND

The posterior distribution of the quantity of interest, Δ, given a set of data \mathbf{D} is:

$$
p(\Delta \mid \mathbf{D})=\sum_{k=1}^{K} p\left(\Delta \mid M_{k}, \mathbf{D}\right) p\left(M_{k} \mid \mathbf{D}\right)
$$

where $\mathbf{M}=\left(M_{1}, \ldots, M_{k}\right)$ is the set of models considered.
The posterior model probability of model M_{k} is given by Bayes rule:

$$
p\left(M_{k} \mid \mathbf{D}\right)=\frac{p\left(\mathbf{D} \mid M_{k}\right) p\left(M_{k}\right)}{\sum_{l=1}^{K} p\left(\mathbf{D} \mid M_{l}\right) p\left(M_{l}\right)}
$$

where

$$
p\left(\mathbf{D} \mid M_{k}\right)=\int p\left(\mathbf{D} \mid \boldsymbol{\theta}_{k}, M_{k}\right) p\left(\boldsymbol{\theta}_{k} \mid M_{k}\right) d \boldsymbol{\theta}_{k}
$$

The likelihood function can be evaluated using either a simple Monte Carlo method via

$$
\hat{p}\left(\mathbf{D} \mid M_{k}\right)=\frac{1}{N} \sum_{i=1}^{N} p\left(\mathbf{D} \mid \boldsymbol{\theta}_{k}^{(i)}, M_{k}\right)
$$

or the Laplace approximation via model selection criteria

$$
p\left(\mathbf{D} \mid M_{k}\right)=\exp \left(-\frac{1}{2} I C_{k}\right)
$$

where IC represents $A I C, A I C C, B I C$, and $K I C$

$$
\begin{aligned}
A I C_{k} & =-2 \ln \left[L\left(\hat{\boldsymbol{\theta}}_{k} \mid \mathbf{D}\right)\right]+2 N_{k} \\
A I C C_{k} & =-2 \ln \left[L\left(\hat{\boldsymbol{\theta}}_{k} \mid \mathbf{D}\right)\right]+2 N_{k}+\frac{2 N_{k}\left(N_{k}+1\right)}{N-N_{k}-1} \\
B I C_{k} & =-2 \ln \left[L\left(\hat{\boldsymbol{\theta}}_{k} \mid \mathbf{D}\right)\right]+N_{k} \ln N \\
K I C_{k} & =-2 \ln \left[L\left(\hat{\boldsymbol{\theta}}_{k} \mid \mathbf{D}\right)\right]+N_{k} \ln N-2 \ln p\left(\hat{\boldsymbol{\theta}}_{k}\right)-N_{k} \ln 2 \pi+\ln \left|\overline{\mathbf{F}}_{k}\right| \\
\bar{F}_{k j} & =\frac{1}{N} F_{k j}=-\left.\frac{1}{N} \frac{\partial^{2} \ln \left[L\left(\hat{\boldsymbol{\theta}}_{k} \mid \mathbf{D}\right)\right]}{\partial \theta_{k i} \partial \theta_{k j}}\right|_{\boldsymbol{\theta}_{k}=\hat{\theta}_{k}} \quad \text { Ye et al., 2008) }
\end{aligned}
$$

3. THE SYNTHETIC EXAMPLE

Random data D consists of deterministic trend μ and random residual R : $D=\mu+R$

True and Alternative Models
$M_{0}: \boldsymbol{\mu}(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} y^{2}$
Three alternative models, M_{1}, M_{2}, and M_{3}
$M_{1}: \boldsymbol{\mu}(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4} y^{2}$
$M_{2}: \boldsymbol{\mu}(x, y)=a_{0}+a_{1} x y+a_{2} y+a_{3} y^{2}$
$M_{3}: \boldsymbol{\mu}(x, y)=a_{0}+a_{1} x+a_{2} y$
4. RESULTS AND DISCUSSIONS

4.1 Asymptotic Investigation

The asymptotic numerical investigation is conducted by gradually increasing the number of calibration data, \mathbf{D}, from 200 to 1,700. or each experiment, following Ye et al. (2004), the four models are calibrated, and the four criteria and corresponding model probabilities are calculated
4.2 Accuracy of BIC and KIC

Questions:
When does KIC approach to BIC?
How accurate is the posterior model probability calculated using BIC, instead of KIC?

Red (MC), Blue (KIC), Green (BIC) Taking M_{3} as an example, KIC asymptotcally reduces to BIC , Bu KIC is more accurate than BIC for $K I C$ is more accurate than BIC for approximating the model
likelihood function and for calculating model probabilities.
4.3 Asymptotic Features of BIC and KIC

The asymptotic behavior of the difference of BIC between M_{1} and M_{3} is both determined by the model fitting term and the complexity penalty term. The in $\mid \overline{F_{i}}$, term of $K I C$ imposes more penalties to the complex model

4.4 Fisher Information Matrix

In $\left|\overline{\mathbf{F}}_{k}\right|$ is the major reason that $K I C$ is more accurate than BIC or approximation the model likelihood function.
In $\left|\overline{\mathbf{F}}_{k}\right|$ values decrease when the number of calibration data increases and its values follow the same order, $M_{1}>M_{2}>M_{0}>M_{3}$

The $\ln \left|\overline{\mathbf{F}}_{k}\right|$ term
discriminates alternative models based on not only model complexity but also model structure by KIC.
4.5 Consistency property of BIC and KIC

Over all the numerical experiments, M_{2} receives negligible probability, due to its most deviation from the true model M_{0} When the true model is included, KIC selects the true model in al experiments by assigning overwhelmingly large probability to it
While AICC selects M_{1} for the experiment of $N=300$

Red $\left(M_{0}\right)$, Green $\left(M_{1}\right)$ and Blue $\left(M_{3}\right)$

4.6 Asymptotic Features of AICC

When the true model is excluded, $A I C c$ considers M_{1} as the bes model for all the experiments. The asymptotic behavior of the difference of $A I C C$ is solely determined by the model fitting term.

4.7 Sensitivity of Posterior Model Probability

The sensitivity of posterior to prior model probability is measured by the range between the maximum and minimum measured by the range between the maximum and minim smaller sensitivity).
For both AICC- and KIC-based probabilities, sensitivity of posterior to prior model probability is irrelevant to the number of calibration data.
The sensitivity is inversely related to the $\Delta K I C$ values because small $\Delta K I C$ values give large range of the posterior model probability (Ye et al., 2005)

Sensitivity of posterior probability of (a) M_{0} and (b) $M_{\text {(}}$ (when the true model is included) and (c) M_{1} and (d) M_{3} (when the true model is excluded) for the twelve numerical experiments.

5. REFERENCES

Lu, D., and M. Ye (2009), Numerical investigation of asymptotic features of mod selection criteria: A case study of alternative geostatistical models, Wate
Ye, M., S.P. Neuman, and P.D. Meyerer (2004), Maximum Likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
Resources Research, 40 , W05113, doi:10.1029/2003WR002557.
Ye, M., S.P. Neuman, P.D. Meyer, and K.F. Pohimann (2005), Sensitivity analysis and assessment of prior model probabilities in MLBMA with application
unsaturated fractured tuff, Water Resources Research, 41, W12429,
doi:10.1029/2005WR004260.
Ye, M..P.D. Meyer, and S.P. Neuman (2008), On model selection criteria in doi:10.10292/2008SWR006803.

