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4.7  4.7  Sensitivity of Posterior Model ProbabilitySensitivity of Posterior Model Probability
• The sensitivity of posterior to prior model probability is 

measured by the range between the maximum and minimum 
posterior probability (a smaller range corresponding to a 
smaller sensitivity).

• For both AICcAICc- and KICKIC-based probabilities, sensitivity of 
posterior to prior model probability is irrelevant to the number
of  calibration data.

• The sensitivity is inversely related to the ΔKIC values, 
because small ΔKIC values give large range of the posterior 
model probability (Ye et al., 2005). 

Sensitivity of posterior probability of (a) M0 and (b) M3 (when 
the true model is included) and (c) M1 and (d) M3 (when the 
true model is excluded) for the twelve numerical experiments. 
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1.1. INTRODUCTIONINTRODUCTION

Using a synthetic example of four geostatistical models
(including the true or data-generating model), this study
is to investigate:

Accuracy of BIC and KIC;
Asymptotic features of the model selection criteria,  
AIC, AICc, BIC, and KIC;
Fisher information matrix’s role in model selection; 
Sensitivity of posterior to prior model probability.  

2. THEORETICAL BACKGROUND2. THEORETICAL BACKGROUND

The posterior distribution of the quantity of interest, Δ, 
given a set of data D is:

(Ye et al., 2008)

Random data D consists of deterministic trend μand 
random residual R: D= μ+R

True and Alternative ModelsTrue and Alternative Models
2

0 0 1 2 3: ( , )M x y a a x a y a y= + + +μ

2
1 0 1 2 3 4: ( , )M x y a a x a y a xy a y= + + + +μ

2
2 0 1 2 3: ( , )M x y a a xy a y a y= + + +μ

3 0 1 2: ( , )M x y a a x a y= + +μ

Three alternative models, M1, M2, and M3

3. THE SYNTHETIC EXAMPLE3. THE SYNTHETIC EXAMPLE
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4.1  Asymptotic Investigation4.1  Asymptotic Investigation
The asymptotic numerical investigation is conducted by gradually
increasing the number of calibration data, D, from 200 to 1,700. 
For each experiment, following Ye et al. (2004), the four models
are calibrated, and the four criteria and corresponding model 
probabilities are calculated. 

4.  RESULTS AND DISCUSSIONS4.  RESULTS AND DISCUSSIONS
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4.2  Accuracy of 4.2  Accuracy of BICBIC and and KICKIC
Questions:Questions:

When does KICKIC approach to BIC BIC ? 
How accurate is the posterior model probability calculated
using BICBIC, instead of KICKIC ?

4.4  Fisher Information Matrix4.4  Fisher Information Matrix
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The           term 
discriminates alternative 
models based on not 
only model complexity 
but also model structures, 
a feature is owned only 
by KICKIC. 

ln | |kF

is the major reason that KICKIC is more accurate than BICBIC
for approximation the model likelihood function. 

values decrease when the number of calibration data 
increases and its values follow the same order, 
M1 > M2 > M0 > M3

ln | |kF
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4.5  Consistency property of 4.5  Consistency property of BICBIC and and KICKIC

Over all the numerical experiments, M2 receives negligible 
probability, due to its most deviation from the true model M0 .
When the true model is included, KIC selects the true model in all 
experiments by assigning overwhelmingly large probability to it.
While AICcAICc selects M1 for the experiment of N=300.

When the true model is excluded, AICcAICc considers M1 as the best 
model for all the experiments. The asymptotic behavior of the 
difference of AICcAICc is solely determined by the model fitting term.

4.6  Asymptotic Features of 4.6  Asymptotic Features of AICcAICc

Green (M1) and Blue (M3)

AICc

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12
Index of numerical experiment

M
od

el
 p

ro
ba

bi
lit

y 
(%

)

AICc

Number of calibration data

D
iff

er
en

ce
be

tw
ee

n
M

1
an

d
M

3

200 400 600 800 1000 1200 1400 1600
-20

-10

0

10

20
-2lnp(D|θk,Mk)
2Nk

2Nk(Nk+1)/(N-Nk-1)
AICck

4.3  Asymptotic Features of 4.3  Asymptotic Features of BIC BIC andand KICKIC

The asymptotic behavior of the difference of BICBIC between M1
and M3 is both determined by the model fitting term and the 
complexity penalty term. The         term of KICKIC imposes more 
penalties to the complex model.
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Taking M3 as an example, KICKIC
asymptotically reduces to BICBIC, But 
using MCMC results as reference, 
KICKIC is more accurate than BICBIC for 
approximating the model 
likelihood function and for 
calculating model probabilities.
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where M =                  is the set of models considered.
The posterior model probability of model Mk is given by Bayes’
rule:

where

The likelihood function can be evaluated using either a simple 
Monte Carlo method via 

or the Laplace approximation via model selection criteria

where IC represents AIC, AICc, BIC, and KIC
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