Numerical Investigation on Asymptotic Features of Model Selection Criteria

Dan Lu (dl07f@fsu.edu) and Ming Ye (mye@fsu.edu)

Department of Scientific Computing, Florida State University, Tallahassee, FL 32306

1. INTRODUCTION

Using a synthetic example of four geostatistical models (including the true or data-generating model), this study is to investigate:

- Accuracy of BIC and KIC;
- Asymptotic features of the model selection criteria, AIC, AICc, BIC, and KIC;
- Fisher information matrix's role in model selection;
- Sensitivity of posterior to prior model probability.

2. THEORETICAL BACKGROUND

The posterior distribution of the quantity of interest, Δ , given a set of data **D** is:

$$p\left(\Delta \left| \mathbf{D} \right. \right) = \sum_{k=1}^{K} p\left(\Delta \left| M_{k}, \mathbf{D} \right. \right) p\left(M_{k} \left| \mathbf{D} \right. \right)$$

where $\mathbf{M} = (M_1, ..., M_k)$ is the set of models considered. The posterior model probability of model M_k is given by Bayes' rule:

$$p\left(\boldsymbol{M}_{k} \mid \mathbf{D}\right) = \frac{p\left(\mathbf{D} \mid \boldsymbol{M}_{k}\right) p\left(\boldsymbol{M}_{k}\right)}{\sum_{i=1}^{K} p\left(\mathbf{D} \mid \boldsymbol{M}_{i}\right) p\left(\boldsymbol{M}_{i}\right)}$$

where

$$p\left(\mathbf{D}\left|\boldsymbol{M}_{k}\right.\right)=\int p\left(\mathbf{D}\left|\boldsymbol{\theta}_{k},\boldsymbol{M}_{k}\right.\right)p\left(\boldsymbol{\theta}_{k}\left|\boldsymbol{M}_{k}\right.\right)d\boldsymbol{\theta}_{k}$$

The likelihood function can be evaluated using either a simple Monte Carlo method via

$$\hat{p}\left(\mathbf{D}\left|\boldsymbol{M}_{k}\right.\right) = \frac{1}{N}\sum_{i=1}^{N}p\left(\mathbf{D}\left|\boldsymbol{\theta}_{k}^{(i)},\boldsymbol{M}_{k}\right.\right)$$

or the Laplace approximation via model selection criteria

$$p\left(\mathbf{D} \mid M_{k}\right) = \exp\left(-\frac{1}{2}IC_{k}\right)$$

where IC represents AIC, AICc, BIC, and KIC

Random data D consists of deterministic trend $\,\mu$ and random residual R: D= $\mu\text{+}R$

Three alternative models, M_1 , M_2 , and M_3

$$M_1: \ \mathbf{\mu}(x, y) = a_0 + a_1 x + a_2 y + a_3 x y + a_4 y^2$$

$$M_2$$
: $\mu(x, y) = a_0 + a_1 x y + a_2 y + a_3 y^2$

 $M_3: \ \mu(x, y) = a_0 + a_1 x + a_2 y$

4. RESULTS AND DISCUSSIONS

4.1 Asymptotic Investigation

The asymptotic numerical investigation is conducted by gradually increasing the number of calibration data, **D**, from 200 to 1,700. For each experiment, following Ye et al. (2004), the four models are calibrated, and the four criteria and corresponding model probabilities are calculated.

4.2 Accuracy of BIC and KIC

Questions:

When does *KIC* approach to *BIC*? How accurate is the posterior model probability calculated using *BIC*, instead of *KIC*?

The asymptotic behavior of the difference of *BIC* between M_1 and M_3 is **both** determined by the model fitting term and the complexity penalty term. The $\ln|\vec{F}_1|$ term of *KIC* imposes **more penalties** to the complex model.

4.4 Fisher Information Matrix

 $\ln |\bar{\mathbf{F}}_{*}|$ is the major reason that *KIC* is more accurate than *BIC* for approximation the model likelihood function. $\ln |\bar{\mathbf{F}}_{*}|$ values decrease when the number of calibration data increases and its values follow the same order, $M_{*} > M_{o} > M_{o} > M_{o}$

The $\ln |\vec{F}_k|$ term discriminates alternative models based on not only model complexity but also model structures, a feature is owned only by *KIC*.

4.5 Consistency property of BIC and KIC

Over all the numerical experiments, M_2 receives negligible probability, due to its most deviation from the true model M_0 . When the true model is included, *KIC* selects the true model in all experiments by assigning overwhelmingly large probability to it. While *AICc* selects *M*, for the experiment of *N*=300.

4.6 Asymptotic Features of AICc

When the true model is excluded, *AICc* considers M_1 as the best model for all the experiments. The asymptotic behavior of the difference of *AICc* is **solely** determined by the model fitting term.

4.7 Sensitivity of Posterior Model Probability

- The sensitivity of posterior to prior model probability is measured by the range between the maximum and minimum posterior probability (a smaller range corresponding to a smaller sensitivity).
- For both AICc- and KIC-based probabilities, sensitivity of posterior to prior model probability is irrelevant to the number of calibration data.
- The sensitivity is inversely related to the △ KIC values, because small △ KIC values give large range of the posterior model probability (Ye et al., 2005).

Sensitivity of posterior probability of (a) M_0 and (b) M_3 (when the true model is included) and (c) M_1 and (d) M_3 (when the true model is excluded) for the twelve numerical experiments.

5. REFERENCES

- Lu, D., and M. Ye (2009), Numerical investigation of asymptotic features of model selection criteria: A case study of alternative geostatistical models, *Water Resources Research*, Under Review.
- Ye, M., S.P. Neuman, and P.D. Meyer (2004), Maximum Likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff, Water Resources Research, 40, W05113, doi:10.1029/2003WR002557.
- Ye, M., S.P. Neuman, P.D. Meyer, and K.F. Pohlmann (2005), Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff, *Water Resources Research*, 41, W12429, doi:10.1029/2005WR004260.
- Ye, M., P.D. Meyer, and S.P. Neuman (2008), On model selection criteria in multimodel analysis, *Water Resources Research*, 44, W03428, doi:10.1029/2008/WR006803.