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Numerical Results

Figure 1: Comparison of the reconstructed solution found by each optimization method.

Figure 2: Iteration progress for investigated methods versus the cost function epsilon.

• Conclusions:
While all the methods tested were able to find an adequate initial condition, the non-smooth n1cv2 method
proved superior at reconstructing the initial conditions by a full order of magnitude.

Nonsmooth optimization methods for inverse problems of this nature hold promise for increased accuracy.

Numerical Solution

• Problem Statement: Given an initial guess f0
∞(y), minimize ε(f∞(y))

• Adjoint of cost function Most modern optimization algorithms use gradient information in order
to efficiently solve a minimization problem. This gradient can be thought of as the direction of steepest
ascent/descent. In our case, we wish to find
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In this study we used the differentiate-then-discretize approach to finding our adjoint. The derivations and
equations can be found in [1].

• Optimization Algorithms
Now that we have our problem formulation and the gradient, we can use a variety of optimization algorithms
to compare the results. In this study, we compared:

• Three versions of the non-linear conjugate gradient (CG) method

• The quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods

• The limited-memory quasi-Newton method (L-BFGS)

• The truncated-Newton method (T-N)

•A hybrid CG and quasi-Newton method

• The INRIA/MODULOPT nonsmooth variable metric bundle algorithm n1cv2[2]

Inverse problem
In a typical inverse problem, we are given data and want to find a set of parameters for the model that best
explain the observations.

Unlike the forward case, an inverse problem is usually ill-posed. Usually the issue is with number 3) from
above. In other words, small changes in the data can lead to large variations in the solution parameters.

• Cost function
We require a function that describes the lack of fit between the model solution which we will then
minimize. We call this function ε and it depends upon the initial condition we are trying to solve:

ε(f∞(y)) =

M∑
m=1

∫
Ω
(fexp(x, y)− f (x, y))2δ(x− xm)δ(y − ym) dxdy

Where f∞(y) is the initial condition, fexp(x, y) are the known downfield parameters, f (x, y) is the model
solution corresponding to f∞, and xm, ym are the grid points of the corresponding measurement.

Forward Problem
• Description
In a typical forward problem, we have a model with a set of parameters that we use to calculate our data.

Solving a forward problem is usually well-posed, i.e. it meets the following three critera:

1. A solution exists

2. The solution is unique

3. The solution depends continuously on the data

In our case, this corresponds to giving conditions at the jet nozzle and solving for the downstream data.

• Model
We consider an underexpanded jet in supersonic flow (M > 1, ρ > ρambient). We use the 2-D
non-dimensionalized parabolized Navier-Stokes with a laminar flow assumption (i.e. ‖ layers):
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Where:

• u, v are the unknown velocities in the x and y directions,

• ρ is the unknown density, and T is the unknown temperature,

• p = ρRT is the pressure, where R is the ideal gas constant,

• Re is the Reynolds number and Pr is the Prandtl number,

• e = CvT is the specific energy, where Cv is the specific volume heat capacity,

• γ is the specific heat ratio,

• (x, y) ∈ Ω where Ω is shown below. f∞ is entrance boundary, and fexp is the outflow boundary.

Introduction
Downfield from a supersonic jet, measurements of temperature, velocity, and density are taken. From this
data, we wish to reconstruct what conditions at the jet nozzle could have generated this data.
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Abstract A parabolized Navier-Stokes (PNS) simulation of a jet engine is used to generate downstream temperature, density, and velocity values in
2-D. The PNS equations are a simplification of the full Navier-Stokes that conflate the time and marching coordinate. Downstream temperature, density
and velocity readings are sampled, from which the upfield parameters are to be reconstructed.

We solve this problem by defining a cost functional that describes the lack-of-fit between the model parameters and the upfield initial conditions. Using
a continuous adjoint of the PNS equations, the gradient of the cost function with respect to the initial conditions is obtained. From this point, we use the
gradient and an initial guess as input to several optimization algorithms, including: three versions of the nonlinear conjugate-gradient (CG) method, three
quasi-Newton adaptations, a new hybrid CG/quasi-Newton algorithm, and a non-smooth optimizer n1cv2. Based on our tests for a variety of different
Reynolds numbers, the non-smooth n1cv2 method proved superior at reconstructing the initial conditions by a full order of magnitude but at a higher
computational cost. Nonsmooth optimization methods for inverse problems of this nature hold promise for increased accuracy.
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