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1.1.IntroductionIntroduction

Centroidal Voronoi Tessellations(CVT’s) are special 
Voronoi Tessellations whose generators are also the 
centers of mass (centroids) of the Voronoi regions with 
respect to a given density function. The classic CVT’s
can efficiently produce a segmentation for homogeneous 
images but fails to handle the inhomogeneous ones.

In order to overcome some deficiencies, we develop an 
edge-weighted centroidal Voronoi Tessellation (EWCVT) 
model by appropriately combining the image intensity 
information together with the length of cluster Boundaries.

2. Classic CVT2. Classic CVT
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Deficiencies of Classic CVTDeficiencies of Classic CVT

Fig. 2. Left: the original image of a simulated noisy minefield. Right: 
CVT-based segmentation into two clusters.

Fig. 3. Left: the original image of “Europe-at-night”. Right: CVT-based 
segmentation into two clusters.

In Figure 1, the CVT-based segmentation failed to 
accurately identify which objects are mines and which 
are just noise. In Figure 2, the CVT-based segmentation 
efficiently identify the lights, but one fails to recognize 
the boundary between the European landmass and the 
Atlantic ocean.

3. Edge3. Edge--Weighted CVT ModelWeighted CVT Model

Define local characteristic function                            :

VoronoiVoronoi Regions VS Regions VS CentrodalCentrodal VoronoiVoronoi TessellationTessellation

Edge Energy (related to boundaries)Edge Energy (related to boundaries)
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The edge energy for each pixel is defined as
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Energy Functional for EdgeEnergy Functional for Edge--Weighted CVT ModelWeighted CVT Model
Together with the classical clustering energy adopted 
by the classical CVT model, we define the edge- 
weighted clustering energy (EWCE) as follows:
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Same as before, this is the energy need to be minimized.

4.  Experiments AND Discussions4.  Experiments AND Discussions

Fig. 4. Left: the original image of a simulated noisy minefield. Center: 
initial clusters obtained by classic CVT. Right: segmentation obtained 
by Edge-Weighted CVT.

Fig. 5. Left: the original image of Europe-at-night. Center: use simple 
circle as initial clusters. Right: segmentation obtained by Edge- 
Weighted CVT.

Figure 4 and 5 demonstrate our algorithms are quite 
robust with respect to the selection of initial clusters.

Fig. 6: different segmentations 
obtained by using different 
weighting factor λ

Fig. 7: different segmentations 
obtained by using different 
neighborhood size  ω

Figure 6 and 7 show the flexibility of our algorithm to 
meet different needs of various applications.

Our algorithms can produce pretty good segmentations 
even for quite complex images from real world scenes. 

Figure 8: Detection of skiers from a real-world background

Figure 9: Detection of elephants from a savanna scene

• EWCVT is computationally less expensive than PDE 
based algorithms.

• EWCVT is easy to be generalized to handle any 
number of clusters

• EWCVT is robustness with respect to noise and 
flexible to control the segmentation accuracy.

5. Conclusion Remarks5. Conclusion Remarks

Energy Functional of Classic CVTEnergy Functional of Classic CVT

Fig. 1: Left: Voronoi regions and their centers of mass (given a 
uniform density) for 10 randomly sampling points in a square; 
note, the generators (the stars) do not coincide with the centers 
of mass (the circles)

Right: A centroidal Voronoi Tessellations in which the generators 
of the Voronoi regions are simultaneously the centers of mass 
(the same uniform density with left figure) of the Voronoi cells  

Given

• A image 

• A set of generators 

Voronoi regions are defined by:

We need to minimize the classic CVT energy:

The minimizer is the Centroidal Voronoi Tessellations 
in which            , i.e., the generators are coincide with 
the centers of mass of each Voronoi regions.

• Neighborhood of pixel        

•

( ),i j

The total edge energy is given by 

Algorithms to minimize the above energy functionalAlgorithms to minimize the above energy functional
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Given an integer     and choose arbitrarily a partition

of image                            . Determine the centroids

of          and take them as generators.   
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1. For every pixel       , try to move       to every other 
clusters, accept the move which results in most energy 
reduction. Then replace     and      with the centroids of 
the newly modified clusters      and      respectively.

2. if no pixel is moved, return          and         . Then exit 
the loop; otherwise, go to step 1.
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