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VII. Conclusions

We have introduced the peridynamics (PD) model as an upscaling of molecular dynamics (MD). We
have shown that the higher-order gradient PDEs obtained from MD and PD are consistent to leading
order. In particular, we have presented numerical experiments showing that dispersion effects appearing
in MD simulations are recovered in PD simulations, in contrast to the classical continuum mechanics
where the dispersion effects disappear.

In the above numerical simulations, we take the MD simulation results as our exact solution and com-
pare the PD simulations with the MD results. The PD simulations reproduce dispersion effects appear-
ing in MD, when preserving the length scale of the system. In the case of the nonlocal linear springs
model, the length scale is determined by the horizon of the interaction, whereas in the Lennard-Jones
(L-J) and embedded-atom (EAM) models, it is determined by the inter-particle distance (this can be ob-
served in the higher-order gradient PDEs, although due to the limitation of space, those corresponding
to L-J and EAM are omitted in this poster).

Coarse PD: Nx = 401; N = 3PD: Nx = 801; N = 3MD: Nx = 801; N = 3

Embedded-atom model:
Coarse PD: Nx = 501; N = 3PD: Nx = 1, 001; N = 3MD: Nx = 1, 001; N = 3

Lennard-Jones model:

The numerical dispersion appearing in MD is preserved for the case of the PD solution, in contrast to
the classical mechanics (CM) wave equation.

CM: Nx = 200, 001; N = 20PD: Nx = 2, 001; N = 10MD: Nx = 4, 001; N = 20

Nonlocal linear springs model:

VI. Numerical Experiments

We present simulation results of a one-dimensional chain of atoms for the different models, i.e., non-
local linear springs, Lennard-Jones and embedded-atom. Following [4], we choose our domain to be
Ω = [0, 1000]. The initial displacement profile is defined by u(x, 0) = p(x) for all x ∈ Ω, where p(x)
is a smooth 21th-order polynomial. The plots below show the concentration (color gradient) evolution
on time (y-axis from top to bottom). The x-axis represents the reference configuration.

V. Embedded-Atom Model

We extend our work to multibody potentials and apply the upscaling of molecular dynamics for the
embedded-atom model. The general form of the model is

Etot =
∑
i

Fi(ρh,i) +
1

2

∑
i

∑
j( 6=i)

φij(rij) with ρh,i =
∑
j( 6=i)

fj(rij),

where Etot is the total energy of the system, φij is a core-core pairwise repulsive potential between
atoms i and j separated by a distance rij, Fi(ρh,i) is the requested energy to embed atom i into the host
electron density ρh,i, and fj is the contribution to the electron density by the atom j. The equation of
motion is obtained by the relation miÿi = −∇iEtot. We implement analytical expressions for Fi, φij,
and fj given at [3].

In our work, we derive an upscaling of the embedded-atom model, though the explicit expressions are
too long for the present poster.

Peridynamics model:
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∫ ∞
−∞

N∑
j=−N
j 6=0

−24 ε

[(
σ12

(y(x + ε, t)− y(x, t))13

)
−

(
σ6

(y(x + ε, t)− y(x, t))7

)]
∆
(
ε− j σ

C

)
dε,

with y(x, t) the current position, at time t, of a particle that was at x in the reference configuration; ε
and C are model parameters, σ represents the model length scale, and ∆(x) is the Dirac delta function.

Lennard-Jones model:

miÿi(t) =
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with yi(t) the position of particle i at time t.

IV. Lennard-Jones Model

We present an upscaling of molecular dynamics for a nonlinear 1-D Lennard-Jones potential.

Local MD model:
The local MD model is given by Eq. (1) with N = 1. It produces a higher-order gradient continuum
model with different coefficients
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Equations (1) and (2) are consistent under the assumptions of N � 1 and Na = δ, using the relations
c = 2Ka/δ

2 and K = 2Ka

N(N+1)
.

Peridynamics model:

ρ(x)ü(x, t) =

∫ δ

−δ

c

|`|
(u(x+`, t)−u(x, t))d` (2)

Nonlocal MD model:

miüi(t) =

N∑
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K
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[
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]
(1)

III. Nonlocal Linear Springs Model

We show that the higher-order gradient continuum model obtained for a 1-D nonlocal linear chain of
atoms matches the peridynamics model and, in contrast, is not consistent with a local springs model.

Higher-order gradient theory ←→

?←→Molecular dynamics Peridynamics

II. Upscaling to Peridynamics

We cast peridynamics as an upscaling of molecular dynamics [2]. Our goal is to have a PD continuum
model that preserves the same dynamics as the original MD model. We show the correspondence
between the models through higher-order gradient continuum formulations.

The peridynamics (PD) equation of motion [1] is

ρ(x)ü(x, t) =

∫
Hx

κ(u(x′, t)−u(x, t),x′−x)dVx′+ b(x, t), t ≥ 0

withHx the neighborhood of x (i.e., a spherical region of radius δ
around x, where δ is called the horizon), u the displacement vector
field, b the body force, ρ the mass density, and κ a pairwise force
density function per volume.

Note the similarity of PD with molecular dynamics (MD).

I. The Peridynamics Model

Abstract

The nonlocal continuum mechanics theory peridynamics [1] is based on an integral formulation, in
contrast to the classical theory of elasticity. We focus on the nonlocality of the peridynamics model and
show how peridynamics preserves dispersion effects inherent to nonlocal molecular dynamics models.
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