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1. Abstract

Stress-driven rearrangement instability (SDRI) theory postulates that diffu-
sion in stressed solids can lead to surface morphological instability, an ef-
fect that is currently believed by many physicists to be real and important for
elevated-temperature deposition or annealing of thin films. Both atomic sur-
face diffusion and bulk diffusion of point defects contribute to the instabilities.
The stress-driven diffusion of mobile oxygen vacancies in the bulk is espe-
cially important in ferroic perovskite films (e.g., Barium Strontium Titanate),
which have desirable optical and electric properties for device and sensor
applications, and often require well-controlled surfaces and interfaces. We
present a continuum reformulation of the SDRI theory that includes the cou-
pled electro-elastic diffusion of oxygen vacancies and introduce a 3D finite-
element scheme to solve the equations for film surface evolution. We also
explore the stability of the film boundary due to perturbations and attempt to
characterize the incipient instabilities in terms of the model parameters.

Figure 1: Simulated image of thin film surface roughness.

2. Balance Equations

Here, we state the balance laws required in deriving our constitutive model.
Electrostatic interactions are governed by Maxwell’s equations

Di = ε0Ei + Pi (1)
Di,i = ρ̂ (2)
Ei = −φ,i (3)

where Di is the electric displacement, ε0 is the permittivity of free space, Ei

is the electric field, Pi is the polarization, φ is the electrostatic potential, and ρ̂
is the enclosed charge density. Mass conservation in the bulk and at the free
surface yield the following relationships

Qi,i = −ξ̇ (4)
ȧ(1− αξ) = −α(Qini + qα,α) (5)

where the dot operator represents the material time derivative, ξ is the va-
cancy number concentration, Qi is the bulk vacancy flux, ȧ is the normal
velocity of the free surface, α is the atomic volume, and qα,α is the surface
diffusive flux. We also assume mechanical equilibrium

σij,j = 0 (6)

where we neglect the influence of any body forces.

3. Constitutive Theory

Here, we develop a thermodynamically-consistent model for a material with
mobile charged vacancies using the Coleman-Noll procedure. We assume
that the charge density is proportional to the vacancy concentration through
the elementary charge e and vacancy valance contribution z.

ρ̂ = ezξ (7)

Based upon the second law of thermodynamics, the dissipation rate is always
non-negative for any thermodynamically-admissible process.

Φ = W − Ω̇ ≥ 0 (8)

We assume the following expressions for the external working rate W and
total system energy rate Ω̇

W =
D

Dt

∫
s

(electric + interfacial + mechanical− chemical) ds

=
D

Dt

∫
s

(
σ̂φ + τκ + t̂iui − µQini

)
ds (9)

Ω =

∫
v

(internal + electric) dv

=

∫
v

(
ρU +

ε0

2
‖φ,i‖2

)
dv (10)

we write U in terms of the Helmholtz free energy of the system Ψ, which is as-
sumed to have a functional dependence on strain, polarization, temperature,
and vacancy concentration, and defined in the usual way.

Ψ = Ψ(u(i,j), Pi, θ, ξ) = U − θη (11)

Employing this definition of Ψ and the previously stated balance laws, we
mathematically enforce non-negativity on each process in the resulting equa-
tion to extract our constitutive relationships.

η = −∂Ψ

∂θ
(12)

Ei = ρ
∂Ψ

∂Pi
(13)

σij = ρ
∂Ψ

∂u(i,j)
(14)

t̂i = ρ
∂Ψ

∂u(i,j)
nj (15)

Qi = −dijµB,j (16)

µB = ρ
∂Ψ

∂ξ
+ ezφ (17)

Qini = β(µS − α−1µB) (18)
qα = −Aαβµ

S
,β (19)

µS =
ρΨ + ρ̂φ− τκ

1− αξ
(20)

To proceed, we must assume an explicit form for the Helmholtz free energy.

Figure 2: Cartoon depiction of film processes under consideration.

Figure 3: AFM image of a single CuO ring on SrTiO3 substrate.

4. Free Energy #1 (El-Azab and Liang, 2003)

If we neglect electrostatics and bulk diffusion, this theory corresponds with
El-Azab and Liang (2003).

ρΨ =
1

2
Cijklu(i,k)u(j,l) (21)

In that work, the authors demonstrate the formation of nanoscale rings from
surface pits, dot-dot coalescence, and a ring-to-dot transition.

Figure 4: AFM image of Cu/SrTiO3 film morphology after plasma exposure

( a ) surface profile ( b ) chemical potential

Figure 5: Simulation of a square array of rings

5. Free Energy #2

We propose the following extended free energy term that we hope will cap-
ture additional physics, most importantly the influence of charged vacancies:

ρΨ =
1

2
Cijklu(i,k)u(j,l) +

1

2
λijPiPj −

1

3
σiiδ + ϕ(ξ, θ) (22)

with elastic coefficients Cijkl, electric susceptibility λij, relaxation volume δ,
and the free energy of vacancies ϕ(ξ, θ) for which we assume

ϕ(ξ, θ) = Evξ + kB ln (ξ!(1− ξ)!)

≈ Evξ + α−1kBθ ((1− αξ) ln(1− αξ) + αξ lnαξ) (23)

where Ev is the vacancy formation energy and we have made use of Ster-
ling’s approximation

lnN ! ≈ N lnN −N (24)

6. Method of Solution

Here, we state the resulting governing equations in weak form, appropriate
for use in a finite element program.

6.1 Electrostatics
Given: ρ̂ : Ω → R, V : ΓV → R and Dini : ΓD → R, find φ ∈ S such that
∀ w ∈ V

−
∫

ΓD

wDini dΓ−
∫

Ω

w,iεijφ,j dΩ +

∫
Ω

wρ̂ dΩ = 0 (25)

where,

φ = V on ΓV (26)

6.2 Elasticity
Given fi : Ω→ R, ūi : Γu → R and t̂i : Γt̂ → R, find ui ∈ S such that ∀w ∈ V

nsd∑
i=1

(∫
Γt̂i

wit̂i dΓ

)
−
∫

Ω

wi,jσij dΩ +

∫
Ω

wifi dΩ = 0 (27)

where,

ui = ūi on Γu (28)

6.3 Diffusion
Given ∆t > 0, γ ∈ (0, 1), ξn : Ω → R, Q̄i : ΓQ → R, and Qini : ΓQn → R, find
ξn+1 ∈ S such that ∀ w ∈ V

0 =

∫
Ω

wξn+1 dΩ−
∫

Ω

wξn dΩ

+ (1− γ)∆t

(∫
ΓQn

wQn
i n

n
i dΓ−

∫
Ω

w,iQ
n
i dΩ

)

+ γ∆t

(∫
ΓQn

wQn+1
i nn+1

i dΓ−
∫

Ω

w,iQ
n+1
i dΩ

)
(29)

where,

Qi = Q̄i on ΓQ (30)

6.4 Free Boundary Update
We update the free surface profile using the relation

rn = rn + ȧ∆t (31)

where ȧ is given by (5).

7. Ongoing Work

• Continuum model for oxygen vacancies in ferroic perovskites

• Fully three-dimensional finite element implementation

• Verification and validation of computer code

• Analysis of numerical results
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