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Peridynamic is a recently developed theory of solid mechanics that replaces the partial differential equations (PDE) of 
the classical continuum theory with integro-differential equations (IDE). We apply Finite Element Methods (FEM) to 
implement the peridynamic model. Since the integro-differential equations remain valid in the presence of 
discontinuities such as cracks, the method has the potential to model fracture and damage with great generality. We 
use piecewise constant functions in regions where discontinuities may appear and piecewise linear function in areas 
where the solutions is smooth and investigate how to combine these two methods. We are also interested in the 
choice of the horizon radius to implement the peridynamic model more accurately. Theoretical analysis and numerical 
results for different cases are given.
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The Peridynamic Model

1-D Linear PD Model for a Microelastic Material

A linearized version of the Peridynamic theory for a microelastic material takes the form                                        
where           is the material’s micromodulus function[2], for the special case of proportional material, that 

( , ) ( ) .= ∀f Cη ξ ξ η,  ξ, η
( )C ξ

The constant of proportionality      depends not only on the radius of the peridynamics horizon but also on the
the dimension of the domain, and in one-dimensional case,                 [3],  where     denotes the bulk modulus. 
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Let                        ,                                    . So a linearized version of the Peridynamic theory for the microelastic
material simplifies to the Integro-Differential Equation: 

( , )α βΩ = ( , )α δ β δ′Ω = − +

To simplify the computation, let                         and including the boundary and initial conditions to the equations, 
then we get the equations we will concentrate on:
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We try to show the Existence and Uniqueness of the finite element solution to 1-D linearized peridynamic
model by Lax-Milgram theorem:
We Ignore the       term first, and without loss of generality let the boundary conditions to be
then we can simplify the finite element equation to be:
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So the only step we need to prove is the left side of the inequality, which is in progress.

δIt is convenient to assume that for a given material such that beyond the horizon     , the particles do not interact, 

i.e.  ( , ) 0, .δ> ⇒ = ∀fξ η ξ η

x tThe acceleration of any particle at     in the reference configuration at time    is 
described by the Integro-Differential Equation (IDE) [1,2]
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where      is mass density,     is displacement,       is a neighborhood of     ( i.e. a
spherical region of radius     around    , where     is called the horizon),     is a
pairwise force function ( force/volume  ),     is body force density.
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For simplification, we denote the relative position of two particles by :                       

and denote the relative displacement of two particles by      :η
′= −x xξ
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FEM Framework for 1-D PD Model

Denote ,2{ ( , ) | ( , ) ( ), 2}tV u x t D u x t Lγ γ′= ∈ Ω ≤
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Let      denote the finite dimensional subspace of     , the Galerkin finite element approximation to

the equations is defined as follows: to solve                   , such that
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The resulting system is a linear system, denote                 , where

and if we let                                  , then for example if we use the piecewise constant function as the basis

function to solve the system,      is a               banded positive definite matrix.
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Notice that if we use the Taylor’s Theorem to the Integral Term in the equation, we get that
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We first exam the convergence rate for the case when exact solution          are polynomials, whose degrees are 
less than 4: for example,                  , we get the error for two cases: (1)      is not fixed ; (2).     is fixed as below:
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Figure 1
From Figure 1, the      is not fixed, we can see that:
as the number of grid point increases, the error 
does not decrease, almost fixed, which means that 
the numerical solution is not convergent to the 
exact solution as we want! And also from the result
we can see that when      is larger, the error is 
smaller!
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δ

Figure 2
From Figure 2, the      is fixed, we can see that as
the number of grid point increases, the error decreases
as we want, which means that the numerical solution
is convergent to the exact solution, for the case when
exact solution                  we can get the error to be 
and also from the result we can see that when      is 
larger, the error is smaller!
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We have successfully applied the Finite Element Methods to implement the 1-D linearized peridynamics model, 
we get the convergent numerical results; compare the error for cases when       is fixed or not; exam the influence of
the size of the horizon to the solution and finish some part of the theoretical analysis of the existence and uniqueness 
of the finite element solution to 1-D linearized peridynamic model. 

In the future, we will use piecewise constant functions in regions where discontinuities may appear and piecewise

linear function in areas where the solutions is smooth and investigate how to combine these two methods. We will

also continue the theoretical analysis and numerical results for different cases.

δ

Then by the “Morrey’s inequality ”, we can prove that: 

Define the new Norm by                                 , in order to use the Lax-Milgram theorem, we need to prove the 
equivalent between two norms: i.e.                              .
First, by the symmetric property, we can prove that:
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Since the equations do not require derivative to     , it can deal with the case when the solution is discontinuous :x

Figure 3
Manufactured discontinuous solution:

Table 1
From Table 1, we can see that the model  works for the 
discontinuous case, and as the number of grid point increases, 
the error decreases as we want, which means that the numerical 
solution is convergent to the exact solution, and also from the 
result we can see that when      is larger, the error is smaller; the
convergence rate is between              .
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