
Evolutionary Networks
Gordon Erlebacher



Starting Point
• Articles by Ana Porto (2002-2010)

- Compared performance of Artificial Neural Networks 
(AAN) against Artificial Glial Neural Networks (AGNN)

- ANN: feedforward network

- AGNN: attach one astrocyte per neuron

✓ once astrocyte is activated on a slower time scale, the 
neuron it is attached to and those neurons connected 
in the forward direction, have their weights increased

• Results: Porto reports improved results in classification 
problems with AGNN, more improvement for complex sells. 



However, 

• Adler (undergraduate student), could not 
duplicate Porto’s results.

• He found better performance of her ANN, 
and his AGNN performed worse



Porto’s Results

• Porto was not sufficiently precise in her 
papers

• I could not get her Ph.D. thesis from her, 
even after direct communication with her 
and her advisor

• Conclusion: I do not trust her work



Porto papers

• Artificial Neural Networks Based on Brain Circuits Behaviour and 
Genetic Algorithms_2005_porto, pazos, araque_chapter.pdf  
A new hybrid evolutionary mechanism based on unsupervised learning 
for Connectionist Systems_2007_porto, araque, pazos_paper.pdf 

• Artificial neuron-glia networks learning approach based on 
cooperative coevolution_2016_mesejo, et al, porto_paper.pdf 

• Artificial Astrocytes Improve Neural Network 
Performance_2011_porto-pazos_paper.pdf 

• Computational Models of Neuron-Astrocyte Interactions Lead to 
Improved Efficacy in the Performance of Neural 
Networks_2012_alvarellos_gonzalez_porto-pazos_paper.pdf



Approach

• Backpropagation was used to determine 
the weights of the ANN

• A genetic algorithm was used to determine 
some of the parameters of the artificial 
astrocyte model (I will not describe it here)



Generally

• Search algorithms are a balance between

- exploration

✓ cover parameters space

- exploitation

✓ exploit local structure of optimization 
landscape



Four fitness landscapes
Unimodal

Noisy
(or “Hilly” or “Rocky”)

Needle in a Haystack

Deceptive

Figure 6 Four example quality functions.

We now have a knob we can turn: r, the size of the bound on Tweak. If the size is very small,

then Hill-Climbing will march right up a local hill and be unable to make the jump to the next hill

because the bound is too small for it to jump that far. Once it’s on the top of a hill, everywhere it

jumps will be worse than where it is presently, so it stays put. Further, the rate at which it climbs

the hill will be bounded by its small size. On the other hand, if the size is large, then Hill-Climbing

will bounce around a lot. Importantly, when it is near the top of a hill, it will have a difficult time

converging to the peak, as most of its moves will be so large as to overshoot the peak.

Thus small sizes of the bound move slowly and get caught in local optima; and large sizes on

the bound bounce around too frenetically and cannot converge rapidly to finesse the very top of

peaks. Notice how similar this is to � used in Gradient Ascent. This knob is one way of controlling

the degree of Exploration versus Exploitation in our Hill-Climber. Optimization algorithms which

make largely local improvements are exploiting the local gradient, and algorithms which mostly

wander about randomly are thought to explore the space. As a rule of thumb: you’d like to use a

highly exploitative algorithm (it’s fastest), but the “uglier” the space, the more you will have no

choice but to use a more explorative algorithm.

2.2 Single-State Global Optimization Algorithms

A global optimization algorithm is one which, if we run it long enough, will eventually find the

global optimum. Almost always, the way this is done is by guaranteeing that, at the limit, every

location in the search space will be visited. The single-state algorithms we’ve seen so far cannot

guarantee this. This is because of our definition (for the moment) of Tweak: to “make a small,

bounded, but random change”. Tweak wouldn’t ever make big changes. If we’re stuck in a

sufficiently broad local optimum, Tweak may not be strong enough to get us out of it. Thus the

algorithms so far have been local optimization algorithms.

18

Essentials of metaheuristics_2011_luke_book.pdf

Ascent techniques will 
likely fail

Need mixture between 
exploratory and exploitation

Exploitation

Need exploratory + exploitation

Need exploitation



1D landscape
Unimodal

Noisy
(or “Hilly” or “Rocky”)

Needle in a Haystack

Deceptive

Figure 6 Four example quality functions.

We now have a knob we can turn: r, the size of the bound on Tweak. If the size is very small,

then Hill-Climbing will march right up a local hill and be unable to make the jump to the next hill

because the bound is too small for it to jump that far. Once it’s on the top of a hill, everywhere it

jumps will be worse than where it is presently, so it stays put. Further, the rate at which it climbs

the hill will be bounded by its small size. On the other hand, if the size is large, then Hill-Climbing

will bounce around a lot. Importantly, when it is near the top of a hill, it will have a difficult time

converging to the peak, as most of its moves will be so large as to overshoot the peak.

Thus small sizes of the bound move slowly and get caught in local optima; and large sizes on

the bound bounce around too frenetically and cannot converge rapidly to finesse the very top of

peaks. Notice how similar this is to � used in Gradient Ascent. This knob is one way of controlling

the degree of Exploration versus Exploitation in our Hill-Climber. Optimization algorithms which

make largely local improvements are exploiting the local gradient, and algorithms which mostly

wander about randomly are thought to explore the space. As a rule of thumb: you’d like to use a

highly exploitative algorithm (it’s fastest), but the “uglier” the space, the more you will have no

choice but to use a more explorative algorithm.

2.2 Single-State Global Optimization Algorithms

A global optimization algorithm is one which, if we run it long enough, will eventually find the

global optimum. Almost always, the way this is done is by guaranteeing that, at the limit, every

location in the search space will be visited. The single-state algorithms we’ve seen so far cannot

guarantee this. This is because of our definition (for the moment) of Tweak: to “make a small,

bounded, but random change”. Tweak wouldn’t ever make big changes. If we’re stuck in a

sufficiently broad local optimum, Tweak may not be strong enough to get us out of it. Thus the

algorithms so far have been local optimization algorithms.

18

Essentials of metaheuristics_2011_luke_book.pdf

Ascent techniques will 
likely fail

Need mixture between 
exploratory and exploitation

Exploitation

Need exploratory + exploitation

Need exploitation

Single parameter



Imagine 20 paramters

20-D space!!!



This got me thinking

• Evolve the topology of the network

• Evolve the astrocyte model

• Run unsupervised networks

• Evolve the evolution rules themselves



Variety of approaches

• Hill climbing and variants

• Genetic Algorithms

• Ant colony optimization

• Monte-Carlo and variants

• Simulated Anhealing

• etc.



Genetic Algorithms

• One of many evolutionary algorithms

- encodes parameter problems in some 
representation 

✓ string of floats, string of bits, graph, etc.

- establishes a population of problems

• Requires a fitness function



Genetic Operators

• Fitness selection from a population

• Mutations

• Crossovers



Advantage of genetic 
algorithms

• A problem can be parametrized by “n” 
parameters

• The problem need not depend 
continuously on these parameters

• However, 

- GAs are stochastic in nature

- results not guaranteed



NEAT framework

• Evolution of Neural Networks

• Uses genetic-like algorithm

• Designed to evolve topologies

• Mutation operator (add nodes, add edges)

• Crossover operator (create a new 
topology from two old ones)



History Marker

• Given two topologies, how to create an 
offspring? 

• Keep track of when nodes and edges are 
added with a historical marker

• Use the marker to create new topologies in 
such a way that local sections of the topology 
have a change to evolve and prove themselves 
rather than be destroyed immediately



Essentials of metaheuristics_2011_luke_book.pdf

• The chapter on Representations discusses 
different ways of encoding information for 
evolutionary information (lists of 
parameters, graphs, etc.)





Genotype to phenotype
K. O. Stanley and R. Miikkulainen

Figure 2: A genotype to phenotype mapping example. A genotype is depicted that
produces the shown phenotype. There are 3 input nodes, one hidden, and one output
node, and seven connection definitions, one of which is recurrent. The second gene is
disabled, so the connection that it specifies (between nodes 2 and 4) is not expressed in
the phenotype.

fitness function in this way can encourage smaller networks, it is difficult to know
how large the penalty should be for any particular network size, particularly because
different problems may have significantly different topological requirements. Altering
the fitness function is ad hoc and may cause evolution to perform differently than the
designer of the original unmodified fitness function intended.

An alternative solution is for the neuroevolution method itself to tend towards
minimality. If the population begins with no hidden nodes and grows structure only
as it benefits the solution, there is no need for ad hoc fitness modification to minimize
networks. Therefore, starting out with a minimal population and growing structure
from there is a design principle in NEAT.

By starting out minimally, NEAT ensures that the system searches for the solu-
tion in the lowest-dimensional weight space possible over the course of all generations.
Thus, the goal is not to minimize only the final product, but all intermediate networks
along the way as well. This idea is they key to gaining an advantage from the evo-
lution of topology: it allows us to minimize the search space, resulting in dramatic
performance gains. One reason current TWEANNS do not start out minimally is that
without topological diversity present in the initial population, topological innovations
would not survive. The problem of protecting innovation is not addressed by these
methods, so networks with major structural additions are likely not to reproduce. Thus,
speciating the population enables starting minimally in NEAT.

3 NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method, as described in detail in this section, consists of putting together
the ideas developed in the previous section into one system. We begin by explaining

106 Evolutionary Computation Volume 10, Number 2

Node 1
Sensor

Node 2
Sensor

Node 3
Sensor

Node 4
Output

Node 5
Hidden

In 1
Out 4
Weight 0.7
Enabled
Innov 1

In 2
Out 4
Weight−0.5
DISABLED
Innov 2

In 3
Out 4
Weight 0.5
Enabled
Innov 3

In 2
Out 5
Weight 0.2
Enabled
Innov 4

In 5 In 1 In 4
Out 4 Out 5 Out 5
Weight 0.4 Weight 0.6 Weight 0.6
Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

  

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3
5

4



MutationsEvolving NN’s through Augmenting Topologies

Figure 3: The two types of structural mutation in NEAT. Both types, adding a connec-
tion and adding a node, are illustrated with the connection genes of a network shown
above their phenotypes. The top number in each genome is the innovation number of
that gene. The innovation numbers are historical markers that identify the original his-
torical ancestor of each gene. New genes are assigned new increasingly higher num-
bers. In adding a connection, a single new connection gene is added to the end of the
genome and given the next available innovation number. In adding a new node, the
connection gene being split is disabled, and two new connection genes are added to the
end the genome. The new node is between the two new connections. A new node gene
(not depicted) representing this new node is added to the genome as well.

the genetic encoding used in NEAT and continue by describing the components that
specifically address each of the three problems of TWEANNs.

3.1 Genetic Encoding

NEAT’s genetic encoding scheme is designed to allow corresponding genes to be easily
lined up when two genomes cross over during mating. Genomes are linear represen-
tations of network connectivity (Figure 2). Each genome includes a list of connection
genes, each of which refers to two node genes being connected. Node genes provide a
list of inputs, hidden nodes, and outputs that can be connected. Each connection gene
specifies the in-node, the out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and an innovation number, which allows
finding corresponding genes (as will be explained below).

Mutation in NEAT can change both connection weights and network structures.
Connection weights mutate as in any NE system, with each connection either per-
turbed or not at each generation. Structural mutations occur in two ways (Figure 3).
Each mutation expands the size of the genome by adding gene(s). In the add connection
mutation, a single new connection gene with a random weight is added connecting
two previously unconnected nodes. In the add node mutation, an existing connection is

Evolutionary Computation Volume 10, Number 2 107

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>6 6−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node



Evolving NN’s through Augmenting Topologies

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>6

5−>4

5−>4

1−>5

1−>5

6−>4

6−>4

1−>6

1−>6

1−>61−>5

5−>6

5−>6

3−>5

3−>5

3−>56−>4

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB DISAB

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

4

4

5

5

5

6

5

5

8

8

7

7

10

10

108

6

6

9

9

97

3

3

3

disjointdisjoint

disjoint

excessexcess

Parent1 Parent2

Parent2

Offspring

Parent1

1

1

1
2

2

2
3

3

3

5

5

5
6

4

4

6

4

Figure 4: Matching up genomes for different network topologies using innovation
numbers. Although Parent 1 and Parent 2 look different, their innovation numbers
(shown at the top of each gene) tell us which genes match up with which. Even with-
out any topological analysis, a new structure that combines the overlapping parts of the
two parents as well as their different parts can be created. Matching genes are inherited
randomly, whereas disjoint genes (those that do not match in the middle) and excess
genes (those that do not match in the end) are inherited from the more fit parent. In
this case, equal fitnesses are assumed, so the disjoint and excess genes are also inherited
randomly. The disabled genes may become enabled again in future generations: there’s
a preset chance that an inherited gene is disabled if it is disabled in either parent.

out the need for expensive topological analysis.
By adding new genes to the population and sensibly mating genomes representing

different structures, the system can form a population of diverse topologies. However,
it turns out that such a population on its own cannot maintain topological innovations.
Because smaller structures optimize faster than larger structures, and adding nodes and
connections usually initially decreases the fitness of the network, recently augmented
structures have little hope of surviving more than one generation even though the in-
novations they represent might be crucial towards solving the task in the long run. The
solution is to protect innovation by speciating the population, as explained in the next
section.

3.3 Protecting Innovation through Speciation
Speciating the population allows organisms to compete primarily within their own
niches instead of with the population at large. This way, topological innovations are

Evolutionary Computation Volume 10, Number 2 109

Creating new topologies


