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Big question

® How does the brain learn?

® |f we understood the functioning of
the brain, one might create an artificial

construct, pose a problem it had not
confronted before and it would

provide a coherent answer



* We interact with the world through our senses
 Our brain emits and receives waves (EEG)

Taste
Sight
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June-July 2014

Start work with three
Young Scholar Students

Generated EEG waves with the Emotiv-
Epoch

Used Emotiv to control a simple game with
the mind

Experimented with the Hierarchical
Temporal Memory of Jeff Hawkins (2007)






Hierarchical Temporal Memory

Convolution networks
Reservoir networks
Spiking networks

Hodgkin-Huxley model
Spatial models
Stochastic models
Reduced models
Spiking models

Spiking networks
Population theory
Mean equations



Some Biology

® Neurons
® Synapses

® Astrocytes
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The Synapse

Dendrite-Axon
Junction




Astrocytes

Blood
* Astrocytes have many functions vessel

Blood-vessel Astrocyte
cells end feet

- provide nutrients to
neurons

- regulate calcium flow

- play a role in various
medical disorders (e.g.

epilepsy)

- modulate synaptic strength
of neurons

Myelinated
axon



Neuron-to-neuron Astrocyte-to-neuron
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Prototypical Models

® Hodgkins-Huxley (HH)

- single compartment

- modeling of the neuron via electric
circuitry

® Multi-compartment models

- model spatial extent of axon and
dendrites
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Point Neuron
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Zoo of voltage spiking behavior
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http://www.izhikevich.org/publications/spikes.htm

Some important concepts

® Spiking dynamics

- how does spiking relate to information content,
memory, etc.

® Propagation speed

- how long does a single spike take to propagate
from neuron to neuron

® Plasticity

- change in the synaptic efficacy



How we Learned

Online courses

FSU courses (most notably from R. Bertram in math)
Several hundred downloaded papers

Weekly group meetings (open to all)

- talks and free-flowing conversation

Question everything

Coding up interactive demos

Networking



Interactive Demo

dw

€ = (v —v°/3 —w)
dw

O 41051
o (v 05 — I)

python FN.py



http://i.huffpost.com/gen/1530991/thumbs/o-HEALTHY-BRAIN-facel

Reality




Most Algorithms (including the Brain)




Artificial Neural Network
Basic computational unit
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http://en.wikibooks.org/wiki/Artificial Neural Networks/Activation Functions



http://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions

Input

Hidden
Nodes

Single Hidden Layer
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Nodes
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Can approximate any function if there are
a sufficient number of nodes in the
hidden layer



Multilayer, Feedforward

Input Hidden Layers Output

Deep Learning



Multilayer, Recursive

Can model all systems of ODEs
(i.e., dynamical systems)



Reservoir Networks

Reservolir




Reservoir Networks

Have the potential to store information

Recursion in networks often translates to the use of
past information

It is possible to control the length of time information
IS maintained in the network

Thus, there is the hope of building in memory effects
(short, medium, long term) into these reservoirs

The average neuron in the brain has 1000 to
10000 recurrent connections



Some Remarks

® |n all the preceeding networks
- ho propagation speed
- ho spiking

- weights are the solution to a large system
of nonlinear equations (one per node),
combined with the minimization of some
cost function (supervised learning)



Biologically-Enhanced Artificial
Neural Networks

® All the previous networks can be enhanced
to add

- spiking
- propagations between nodes

- weight changes via plasticity



Important Biological
Mechanisms

Plasticity (multiple forms)
- mechanisms that affect the strength of synapses
Synchronization

- propensity for multiple neurons to fire (i.e., spike)
simultaneously

Balance

- some neurons excite and some inhibit (ratio of 5:
excitatory:inhibitatory), downstream neurons

Recursion

- heuron networks are not feedforward



Synfire Chains

e Under certain conditions, neurons that fire

together, will propagate together across a
feedforward network

e Synfire chain theory assumes that spike
delays are constant

e However, real neuron networks are

- recursive

- spike delays are in the range [1ms - 40ms]



Feedforward Architecture
for Synfre Chalns

\ \
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Time

¢ Neuronal Delays are constant
e Neurons in layer 1 spike within a small time interval

e These spikes propagate across the netowork, keeping
their coherence



Neuron #

Neuron #

Synfire Chains

M.-O. Gewaltig et al. | Neurocomputing 38-40 (2001) 621-626 623
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Non-constant delays

® Synfire chains transforms into a
polychronous group

® What is a polychronous group?

A polychronous group is a subset of neurons
that fire in a particular space-time sequence
that is repeatable given the proper input



Why are we interested in
Polychronous Groups!?

Some researchers hypothesize that the
sheer number of polychronous groups
make them a candidate for the storage of
memories
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Questions to answer

® What is the relationship between
polychronous groups and synfire chains?

® VWhat are the statistics associated with
polychronous groups!?

® How are polychronous groups affected by
recursion, plasticity, and outside influence
(i.e., astrocytes)



Some Questions

Let G be the number of polychronous groups in a neuron
network

How does G(N) depend on the number N,the delay statistics, the
number of neuronal connections!?

Dependence of G on the number of connections IT required to fire?

What is the affect of recursion on the properties of polychronous
groups!?

D

ow robust are polychronous groups to changes the effects of
asticity?

ow many polychronous groups contain a given neuron?



An Algebra

Performing simulations to answer these
questions is very expensive, even with the
simplest models

We'd like some theoretical results

Try to create an algebra under very simple
assumptions. Hopefully this will provide
insight into more realistic situations

Next: some initial ideas (by Nathan Crock)



Each neuron requires two input spikes to be activated
in a biological network, many spikes might be required

N=3 ‘Neuronal Group Activation

0 m=2 o
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2 © \

3

M
One polychronous group 1]

labelled by its anchors
and time of emission

Neuron #
N

P1 ={(1,1), 1)}



Two polychronous groups
labelled by its anchors
and its firing (spiking)
time:

P1={(1,1), (4,2);
P2 ={(3,1), (4,1)}

Neuron #

Neuron #

Neuronal Group Activiation

Neuronal Group Activiation




Initial properties

Consider P1 ={(1,7), (4,2)}

Assume the group is “activated” t; time units
earlier

Rewrite it as P1 = {(1,t/), (4,t)}

The following equality holds
P1 ={(1,t:-t3), (4,1>-13)}

A polychronous group is said to exist
independently of its time of “activation”



Neuron #

Network of
P1={(7,7), (4,2)}

Time shift invariance of polygroup

(Recall: a polygroup is represented by the neurons
that activate it.)
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The it" Neuron

(2)
d
d1 \Neuron index
9
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mo
. Delay from neuron
dn (1) to neuron 2

The “elements” of n(i) are the delays of its
deferent (downstream) connections.



Summary

Vector-like objects (neurons)
Matrix-like objects (networks)
Basis neurons (not shown)
Time-shift operators

Other operators (+, -)



Some Research Objectives

Define notion of vector space for neurons and networks
(metrics, norms)

Define equivalence between networks

Decompose a neuron or network into irreducible
representations

Construct more complex networks from simpler
networks

Pinpoint the notion of “polygroup complexity”

Use these results as a first approximation of results when
simulating more realistic biological configurations



Sunposium™ 2015: Neural circuits and sunshine

Please Note: You can watch the live stream of some of the talks here: http://www.maxplanckflorida.org/news-and-media/sunposium-live-

stream/.

Max Planck Florida Institute for Neuroscience (MPFI) presents SunposiumTM

2015, the second biennial conference highlighting some of the most complex
issues at the forefront of understanding neural circuits.

The two-day conference features world-renowned scientists from the Max

Planck Society and research institutes and universities throughout the United

1 Attended by Nathan Crock
"and Joel Tabak

Richard Huganir Na Ji Yishi Jin Erik Jorgensen



NEURLISCIENCE

naxreaicx - New Collaboration

THE INSTITUTE OUR SCIENCE TRAINING & EDUCATION NEWS & MEDIA EVENTS

James Schummers, PhD

Research Group Leader
Cellular Organization of Cortical Circuit Function

One Max Planck Way
Jupiter, FL 33458
(561) 972-9110

james.schummers@maxplanckflorida.org

Home Our Science QOur Scientists James Schummers

Researcher Bio

Dr. James Schummers was named an independent Research Group Leader at the Max Planck Florida Institute for Neuroscience in June
2010 and heads the Cellular Organization of Cortical Circuit Fun&ion research group. Dr. Schummers received his bachelor's degree in
Neuroscience from Oberlin College in Oberlin, OH, where he studied the effects of the neurotransmitter neuropeptide-Y on long-term
potentiation (LTP) in the hippocampus. He then moved to Denver CO, where he studied the effects of alcohol on LTP in the Department of
Pharmacology at the University of Colorado Health Science Center. He received a PhD in Systems Neuroscience at the Massachusetts
Institute of Technology with the support of a Howard Hughes Pre-Doctoral Fellowship. His thesis work combined intracellular and
extracellular single neuron recordings with optical imaging approaches to study the integration of synaptic inputs in the context of visual
processing. His postdoctoral work, also at MIT, focused on single-cell resolution imaging to study the response properties of different
classes of cells, including both neurons and astrocytes, in the visual cortex.

CAR



In vivo 2-photon imaging in ferret visual cortex

- in vivo two photon imaging
- Lightly anesthetized (isoflurane)
- Adult ferrets




Orientation tuning in subcellular domains

Each sub-domain has similar orientation tuning, with
guantitative differences

Does this suggest that they are responding to distinct
neural activity?
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PCA, first 8 modes
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Oculus Rift + Leap
Motion







Leap + Oculus

® Work of Juan Llanos
® Obijectives

- construct and manipulate a neuron
network in 3D space in a natural way

- develop a backend, interaction
computational engine

- explore the results from this engine as



Research Group

® Gordon Erlebacher, Lead
® Joel Tabak, FSU Program in Neuroscience
® Nathan Crock (Ph.D.)
- Astrocyte data analysis, polychrony
® Evan Cresswell (Ms)
- Astrocyte modeling, plasticity
® Juan Llanos (Ms)

- Interactive modeling software and visualization



