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Computational Neuroscience

Artificial Neural Networks
Biological networks

Reduced modeling of neurons
Population modeling

Dynamical systems
Mean field equations
Fokker Planck models
Stochastics, noise
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Big question

•How does the brain learn? 

• If we understood the functioning of 
the brain, one might create an artificial 
construct, pose a problem it had not 
confronted before and it would 
provide a coherent answer



• We interact with the world through our senses
• Our brain emits and receives waves (EEG)



June-July 2014

• Start work with three 
 Young Scholar Students

• Generated EEG waves with the Emotiv-
Epoch

• Used Emotiv to control a simple game with 
the mind

• Experimented with the Hierarchical 
Temporal Memory of Jeff Hawkins (2007)





Hierarchical Temporal Memory 

Convolution networks
Reservoir networks
Spiking networks

Hodgkin-Huxley model
Spatial models
Stochastic models
Reduced models
Spiking models 
 
Spiking networks
Population theory
Mean equations



Some Biology

• Neurons

• Synapses

• Astrocytes



Neuron



The Synapse  

Dendrite-Axon 
Junction 



• Astrocytes have many functions

- provide nutrients to 
neurons

- regulate calcium flow

- play a role in various  
medical disorders (e.g. 
epilepsy)

- modulate synaptic strength 
of neurons

Astrocytes



Tripartate Configuration
Astrocyte + Synapse (pre- + post- neuron)

http://physrev.physiology.org/content/physrev/86/3/1009/F2.large.jpg





Prototypical Models

• Hodgkins-Huxley (HH)

- single compartment

- modeling of the neuron via electric 
circuitry

• Multi-compartment models

- model spatial extent of axon and 
dendrites



Ion Channels



Point Neuron

I = Cm
dVm

dt
+ gK(Vm � VK) + gNa(Vm � VNa) + gl(Vm � Vl)

Potassium  
current

Sodium  
current

Leak 
current

Equivalent 
electric circuit

conductances gK, gNa and gl are functions 
of voltage and ion channel properties



Zoo of voltage spiking behavior
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Flops
Simplified 
Models



Izhikevich 2003
Integrate & Fire

du

dt
= a(bV � u)

dV

dt
= cV 2 + dV � u+ I

http://www.izhikevich.org/publications/spikes.htm

if  V == Vpeak
then v <— Vreset,  u = u0

http://www.izhikevich.org/publications/spikes.htm


Some important concepts

• Spiking dynamics 

- how does spiking relate to information content, 
memory, etc.

• Propagation speed 

- how long does a single spike take to propagate 
from neuron to neuron

• Plasticity 

- change in the synaptic efficacy



How we Learned
• Online courses

• FSU courses (most notably from R. Bertram in math)

• Several hundred downloaded papers

• Weekly group meetings (open to all)

- talks and free-flowing conversation

• Question everything

• Coding up interactive demos

• Networking



Interactive Demo

✏
dw

dt
= (v � v3/3� w)

dw

dt
= (v + 1.05� I)

python FN.py



http://i.huffpost.com/gen/1530991/thumbs/o-HEALTHY-BRAIN-facebook.jpg

Reality Goal



Input

Output

Most Algorithms (including the Brain)



Artificial Neural Network 
Basic computational unit

http://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions

bias

http://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions


Single Hidden Layer

Hidden
Nodes

Input  
Node

Output 
Node



Can approximate any function if there are  
a sufficient number of nodes in the 

hidden layer



Input OutputHidden Layers

Multilayer, Feedforward

Deep Learning



Multilayer, Recursive

Can model all systems of ODEs
(i.e., dynamical systems)



Reservoir Networks

Input

Reservoir

Output



Reservoir Networks

• Have the potential to store information

• Recursion in networks often translates to the use of 
past information

• It is possible to control the length of time information 
is maintained in the network

• Thus, there is the hope of building in memory effects 
(short, medium, long term) into these reservoirs

• The average neuron in the brain has 1000 to 
10000 recurrent connections



Some Remarks

• In all the preceeding networks

- no propagation speed

- no spiking

- weights are the solution to a large system 
of nonlinear equations (one per node), 
combined with the minimization of some 
cost function (supervised learning)



Biologically-Enhanced Artificial 
Neural Networks

• All the previous networks can be enhanced 
to add

- spiking

- propagations between nodes

- weight changes via plasticity



Important Biological 
Mechanisms

• Plasticity (multiple forms)

- mechanisms that affect the strength of synapses

• Synchronization 

- propensity for multiple neurons to fire (i.e., spike) 
simultaneously

• Balance

- some neurons excite and some inhibit (ratio of 5:1 
excitatory:inhibitatory), downstream neurons

• Recursion

- neuron networks are not feedforward



Synfire Chains

• Under certain conditions, neurons that fire 
together, will propagate together across a 
feedforward network

• Synfire chain theory assumes that spike 
delays are constant

• However, real neuron networks are

- recursive

- spike delays are in the range [1ms - 40ms]



Feedforward Architecture 
for Synfire Chains

• Neuronal Delays are constant
• Neurons in layer 1 spike within a small time interval
• These spikes propagate across the netowork, keeping  

their coherence



Synfire Chains
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Non-constant delays
• Synfire chains transforms into a 

polychronous group

• What is a polychronous group?

A polychronous group is a subset of neurons 
that fire in a particular space-time sequence 

that is repeatable given the proper input



Why are we interested in   
Polychronous Groups?

Some researchers hypothesize that the 
sheer number of polychronous groups 
make them a candidate for the storage of 
memories



(Izhikevich 2006)
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Questions to answer

• What is the relationship between 
polychronous groups and synfire chains?

• What are the statistics associated with 
polychronous groups? 

• How are polychronous groups affected by 
recursion, plasticity, and outside influence 
(i.e., astrocytes)



Some Questions
• Let G be the number of polychronous groups in a neuron 

network 

• How does G(N) depend on the number N, the delay statistics, the 
number of neuronal connections?

• Dependence of G on the number of connections m required to fire?

• What is the affect of recursion on the properties of polychronous 
groups? 

• How robust are polychronous groups to changes the effects of 
plasticity? 

• How many polychronous groups contain a given neuron?



An Algebra
• Performing simulations to answer these 

questions is very expensive, even with the 
simplest models

• We’d like some theoretical results

• Try to create an algebra under very simple 
assumptions. Hopefully this will provide 
insight into more realistic situations

• Next: some initial ideas (by Nathan Crock)



Each neuron requires two input spikes to be activated 
   in a biological network, many spikes might be required

One polychronous group 
labelled by its anchors 
and time of emission

P1 = {(1,1), (2,1)}

N=3
m=2
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Two polychronous groups 
labelled by its anchors 
and its firing (spiking) 
time:

P1 = {(1,1), (4,2)}  
P2 = {(3,1), (4,1)}

N
eu

ro
n 

# 
N

eu
ro

n 
# 

1
2N

eu
ro

n 
# 

#4

3

2

1
2N

eu
ro

n 
# 

#

3

4

2

N=4
m=2



Initial properties

• Consider P1 = {(1,1), (4,2)}

• Assume the group is “activated” t3 time units 
earlier

• Rewrite it as P1 = {(1,t1), (4,t2)}

• The following equality holds 
       P1 = {(1,t1-t3),  (4,t2-t3)}

• A polychronous group is said to exist 
independently of its time of “activation”



Network of 
P1 = {(1,1), (4,2)}

Time shift invariance of polygroup

(Recall: a polygroup is represented by the neurons 
that activate it.)
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The ith Neuron 

The “elements” of n(i) are the delays of its  
deferent (downstream) connections. 

Neuron index

Delay from neuron  
(i) to neuron 2



Summary

• Vector-like objects (neurons)

• Matrix-like objects (networks)

• Basis neurons (not shown)

• Time-shift operators

• Other operators (+, -)



Some Research Objectives

• Define notion of vector space for neurons and networks  
(metrics, norms)

• Define equivalence between networks

• Decompose a neuron or network into irreducible 
representations

• Construct more complex networks from simpler 
networks

• Pinpoint the notion of “polygroup complexity”

• Use these results as a first approximation of results when  
simulating more realistic biological configurations



Attended by Nathan Crock
and Joel Tabak



New Collaboration



In#vivo#2(photon#imaging#in#ferret#visual#cortex!

Skull#

#(#in#vivo#two#photon#imaging#
#(#Lightly#anesthe<zed#(isoflurane)#
#(#Adult#ferrets#
#



Orienta(on*tuning*in*subcellular*domains*

Each*sub5domain*has*similar*orienta(on*tuning,*with*
quan(ta(ve*differences*
Does*this*suggest*that*they*are*responding*to*dis(nct*
neural*ac(vity?*
*



Astrocytes

• Particular type of glial cell



PCA, first 8 modes



Oculus Rift + Leap 
Motion





Leap + Oculus

• Work of Juan Llanos

• Objectives

- construct and manipulate a neuron 
network in 3D space in a natural way

- develop a backend, interaction 
computational engine 

- explore the results from this engine as 



Research Group
• Gordon Erlebacher, Lead

• Joel Tabak, FSU Program in Neuroscience

• Nathan Crock (Ph.D.)

- Astrocyte data analysis, polychrony

• Evan Cresswell (Ms)

- Astrocyte modeling, plasticity

• Juan Llanos (Ms)

- Interactive modeling software and visualization


