
A Parallel Framework for Solving
PDEs with Radial Basis Functions

Evan F. Bollig, Advisor: Gordon Erlebacher
Department of Scientific Computing, Florida State University

bollig@scs.fsu.edu

Abstract

I N the last four decades, new methods for the solution
of PDEs have surfaced emphasizing the use of a non-

orthogonal class of basis functions commonly referred to
as Radial Basis Functions (RBFs). RBFs are spherically
symmetric functions. That is, univariate functions centered
at some point and symmetric about their center in any di-
mension. Common examples of these functions (illustrated
in Figure 1) include Thin Plate Splines (TPS), Gaussians
(GA) and Multiquadrics (MQ).

We are investigating the use of RBFs to solve 2D and 3D
linear and non-linear PDEs over a collection of nodes con-
tained within ellipsoidal geometries (e.g., see Figure 2). Our
chosen differentiation method, called RBF-FD, expresses
derivatives as linear combinations of function values with
weights dependent on stencils of nodes and RBFs. We are
currently devoted to the development of an efficient parallel
RBF compute framework for problems with large numbers
of nodes/stencils spanning many processors.

Additionally, over the past decade, commodity Graphics
Processing Units (GPUs) specialized for 2D and 3D scene
rendering have seen an explosive growth in raw compute
capability compared to their general purpose counterpart,
the CPU (see Figure 3). Currently capable of near teraflop
speeds and sporting gigabytes of on-board memory in a
single unit, GPUs have transformed from accessory video
game hardware to truly general purpose computational co-
processors. In an effort to leverage this computational po-
tential, we present plans to extend the parallel RBF frame-
work to efficiently compute on heterogeneous multi-core
clusters (i.e. a multi-GPU, MPI implementation on clusters
with many CPUs and GPUs).

1. Radial Basis Functions

Definition 1 A function Φ : Rs → R is called radial provided
a univariate function ϕ : [0,∞)→ R exists such that

Φ(x) = ϕ(ε
∣∣∣∣x− xj

∣∣∣∣)
where xj is the center or point of origin for the function,
and ||·|| is some norm (typ. `2 norm) on Rs. ε is a support
scaling parameter [1].

For simplification we substitute r =
∣∣∣∣x− xj

∣∣∣∣RBF Examples in 1D, 2D and 3D
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Figure 1: Three common Radial Basis Functions (RBFs)
used for the solution of PDEs.

Figure 3: Every node in the domain is assigned an RBF
and the functions are used to construct a solution manifold
at each timestep.

2. RBF-FD

WE solve PDEs using a generalized FD scheme called
RBF-FD [2].

f (x) =

N∑

j=1

cjΦj(x) +

M∑

l=1

dlPl(x), Pl(x) ∈ ΠDm

M =
(m+D

D

)
. In 2D (m=2): P = 1, x, y, xy, x2, y2 Reformulate

as a linear system:
Φc + Pd = f

But we also need constraints:

PT c = 0

[
Φ P
PT 0

](
c
d

)
=

(
f
0

)

Ac = f

Set f = u and solve for coefficients, c:

c = A−1u

Then for any linear operator D construct the approximate
formula:

Du =

NS∑

j=1

cjDΦj(x) +

M∑

l=1

dlDPl(x) =
[
DΦ DP

]( c
d

)

= ADc

= ADA
−1u

•Derivatives are approximated as combinations of neigh-
boring function values
•Node weights depend on RBFs
• Φj(x) and DΦj(x) are analytic evaluations

3. Example Problem

LINEAR and non-linear PDE solutions can be computed
over a collection of nodes contained within 2D and 3D

ellipsoidal geometries.

∂T (r, t)

∂t
= ∇ · [D(T, r)∇T (r, t)]

= ∇D ·∇T + D∇2T
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Figure 4: An example domain and solution error with
non-uniformly distributed nodes. Nodes distributed by Cen-
troidal Voronoi Tessellation over ellipse with ρ = 0.05 +

e(−15∗(x2+(y−0.4)2)). ∆t = 0.00008, 1000 timesteps. Exact
solution: cos(π2 ∗

√
x2 + 0.5 ∗ y2) ∗ e(−t)

4. Parallel Implementation

RBF stencils are partitioned across hosts (CPU/GPU),
and sets are structured in memory to enable over-

lapping computation and communication for increased ef-
ficiency.

G : all nodes received and contained on the GPU g
Q : stencil centers managed by g (equivalently, stencils computed by g)
B : stencil centers managed by g that require nodes on another GPU
R : nodes required by g that are managed by another GPU
O : nodes managed by g that are sent to other GPUs

GPU1 GPU2

X

Y

Z

G x, y, z ∈ G x, y ∈ Q
y ∈ B z ∈ R
y ∈ O G = R∪Q
x ∈ Q\B B ⊂ Q

Centers in memory: G = {Q\O O R}
Table 1: Stencil set partitioning by compute node (GPU1).

Multi-stage derivative calculation:

u′k = (ADA
−1)kuk,Q\O + (ADA

−1)kuk,O + (ADA
−1)kuk,R

• First and second products do not require communication
(ideal for overlapping computation and communication)
• Last inner product blocks until communication finishes

5. Heterogeneous Multi-Core Computing

NEW compute clusters are integrating GPUs to provide
joint multi-core CPU and multi-core GPU compute en-

vironments. This new design requires advanced code de-
sign to efficiently leverage both sets of hardware.
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Figure 5: The ACM cluster (maintained by the Department
of Scientific Computing).

6. Why Compute on GPUs?

PERFORMANCE growth of the GPU in recent years, joined
by improved GPU programming languages demands

consideration of GPU as general purpose co-processor.
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Figure 6: The growing divide between estimated peak per-
formance of CPUs and GPUs, joined by landmark releases
of maturing languages to control the hardware.

7. Computing on Heterogeneous Multi-Core
Architectures

PROGRAMMING parallel kernels to run on CPU and GPU
hardware is simplified with the OpenCL language.
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Figure 7: OpenCL allows “functional portability”; that is,
an abstract notion of parallel architecture that maps to both
CPU and GPU.
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