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Density Based on Distance to Shoreline Traditionally we control placement of
generators in an (S)CVT via an analytic density function. As an example, we could define a piecewise function
taking the z coordinate as input to produce one density in an equatorial band, and another, smaller, density on
the rest of the sphere. Suppose, though, that we might wish to create an SCVT that would be used as a mesh
for a PDE simulation of climate over the earth. We may desire that the generators are more dense in the water
than over land. We may also desire to increase the density (thus reduce the size) of the generators nearer to
the shoreline as opposed to those further from the shoreline in the body of the oceans. This will allow us to
set, proportionately, the amount of generators that we desire to have in regions on the sphere; to increase their
density by the shore, and decrease their density farther away - for example. Each iteration in our grid generation
we calculate the distance to the closest shoreline point for each Voronoi generator and triangle circumcenter.
We then calculate a distance, distα, by consulting this list of distances, which for generators/circumcenters
having a distance greater than distα we will not influence the density based on distance. After this distα cutoff
region we will only use some position dependent proxy information (kinetic energy, surface height, for exam-
ple). Where dist < distα, we will let both proxy and distance compete to influence the density.

Density Based on Distance to Shoreline Algorithm:
Let x be a point on the unit sphere in Cartesian coordinates, let proxy(x) be the value of the density proxy at
x, let dist(x) be the arc distance to the closest shoreline point from x, let distmax be the largest distance to a
closest shoreline point from all of Voronoi generators and triangle circumcenters for the current iteration, let
distα be the grid dependent cutoff point for density influenced by distance to shoreline, and let β be a grid
scaling parameter:

ρ(x) =

max
(
tanh

(
1−dist(x)
distα

)
, proxy(x)

)β
: x|dist(x) ≤ distα

proxy(x)β : x|dist(x) > distα
(5)

Example Meshes In Figures 2 and 3, we show a mesh composed of 100,000 generators. Here, the
shoreline is represented as a set of magenta points, and the coloring of the Voronoi cells are relative to their
density value (high = bright, ..., low = dark ). Soon, we plan to support multiple proxies in different continents
/ land masses. This is of particular interest in that through this we can facilitate the communication of models
which operate over various regions of the earth (land, sea, land ice, sea ice) by allowing them to use subsets of
the same mesh.

Figure 2: View of Asia, 100k generators, β 4.0

Figure 3: View of North America, 100k generators, β 4.0

What is a Spherical Centroidal Voronoi Tessellation? A Spherical Cen-
troidal Voronoi Tessellation (SCVT) is a CVT where the domain in question is a sphere. To be precise, let S be
a 2-sphere and {zi}ni=1 be a set of points, called generators, on S. Define subsets of S, denoted Vi and called
Voronoi regions , where

Vi = {x ∈ S| |x− zi| < |x− zj| for j = 1, . . . , n, j 6= i} (1)

and | · | is the Euclidean norm in R3. In addition, we ensure that the set of Vi are a tessellation by prescribing
that

Vi ∩ Vj = ∅, i 6= j (2)
∪ni=1Vi = S (3)

The final property we specify is that zi = z∗i ,

z∗i =

∫
Vi
yρ(y)dy∫

Vi
ρ(y)dy

(4)

and so the generator of each Vi is its mass center z∗i . A set of Vi’s satisfying (2) and (3) is a tessellation ,
adding (1) makes it a Voronoi tessellation , and appending (4) creates a centroidal Voronoi tessellation - which
we make into an SCVT by simply saying that S is a sphere.

How do we create an SCVT? Typically we create an SCVT through an iterative pro-
cess known as Lloyd’s method; from S. Lloyd of Bell Laboratories in the 1960’s. Simply, we take our set of
generators, create a Voronoi diagram, then move each generator to the mass center of its region. We do this
until some stopping criteria have been met, typically choosing a maximum number of iterations, as a safeguard,
and the second criterion as the maximum change between two iterations of a particular generator as being less
than some epsilon.

Here is Lloyd’s algorithm, more formally:

Given:

• S a 2-sphere

• n a positive integer

• {zi}ni=1 an initial set of generators

• ρ a density function defined on S

Iteration:

1. Create a Voronoi tessellation using {zi}.
2. Calculate the mass center of each Vi.

3. Set the generator of each Vi to its mass center.

4. Repeat 1 - 3 until the convergence criterion (or criteria) have been satisfied.

One note however, in practice we use STRIPACK to compute the Delaunay Triangulation on the sphere, and
compute the Voronoi diagram from this triangulation. We do not directly compute the Voronoi diagram, but the
spirit of the algorithm above remains the same.

Shoreline Conforming SCVTs We now describe a method to more accurately capture the
shoreline that is compatible with the Lloyd iterations we are using to produce our SCVTs. We include two
additional steps in Lloyd’s Algorithm between Steps 3 and 4. These extra steps will help to move some Voronoi
generators into a set of potential positions that we define, allowing us to have, much more precisely, a mesh
which approximates the actual shorelines of the earth. This is of particular interest in that through this we can
facilitate the communication of models which operate over the land and those that operate over the ocean by
allowing them to use subsets of the same mesh. For our purposes here, the term ‘shoreline point’ means one
value in an array which describes an approximation of the actual shoreline. We provide an example set of
shoreline points in Figure 1.

Shoreline Conforming Algorithm:

1. For each point on the shoreline, associate with the shoreline point the generator that is closest, recording the
distance.

2. For each generator that is associated with a point on the shoreline, move the generator’s location to be
coincident with the shoreline point which is the closest of those so associate

Figure 1: Longitude/latitude coordinates (black) in the Intermediate (1.0km) version of the GSHHS database
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Abstract : In the past and increasingly so towards the present, the modeling of our oceans is of great import. In order to facilitate this simulation, we
wish to discretize the sphere in an optimal manner. That is to say, we wish to place the most grid points where we have the most information to capture.
Here, we wish to support both local refinement and global refinement. To start, we use the theory of centroidal Voronoi tessellations on the sphere to give
us a regular mesh. We supplement this with an approximation of the shoreline, which we use by both forcing generators to conform to it and regulating
the density of generators based on their distance to it. In addition, away from the shoreline we vary the density based on some proxy information.
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