
Abstract
The model reduction technique presented here is based on direct minimization of the energy functional of a nanocrystalline

 

electronic system with respect to the electron density. This solution of the minimization problem is aided by a two-level 
interpolation of the unknown functions using finite element (FEM) discretization

 

of the physical space over which the solution is sought. Two grids are used. The first is a subatomic finite element grid which

 

identically discretizes

 

the individual unit cells in 
the crystal lattice.  The spatial behavior of the electron density is represented at the nodes of this “electronic”

 

FE grid. The second grid is a larger-scale lattice-level grid in which unit cells are grouped into “lattice regions”

 

which have “interpolated”

 

unit 
cells and “representative”

 

unit cells.  The profiles of the unknown functions of electron density are interpolated across these lattice regions (in the interpolated unit cells) in terms of the electron density values at the representative unit cells of the lattice 
region in a unique way.  Each lattice region may be thought of as akin to a linear finite element with nodal points at a specific cell-local position in the corner unit cells of the lattice region.  The function values at these nodal points are used to estimate 
the function values only at corresponding local positions within

 

the interpolated unit cells inside the lattice region using FE shape functions that depend on the shape of the lattice region. The assumed near periodicity of the electron density allows for

 

this type of linear interpolation at corresponding positions in the unit cells.  In this way, the electronic energy functional has been re-expressed as a function of the electron density at the electronic nodes only in the representative unit cells, greatly 
reducing the number of degrees of freedom for the minimization problem.  The formalism of the proposed reduction scheme for Orbital-Free DFT is presented and progress of the implementation of the technique is reported.
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Future Work
 Implementation of energy and energy gradient calculation method

 

described (in progress).

 Integration with an optimization package to compute the representative electron density that minimizes the energy E{}.

 Improve the treatment of boundaries of the electronic problem to improve the errors in previous work (see references).

Evaluation of Energy & Energy Gradients
The ground state electron density distribution minimizes the energy.  To find this g.s. density, the energy and the 
energy gradient must be calculated with respect to the vector of

 

density values at the nodes of the two-level 
mesh.  The energy terms in the electronic energy functional contain integrals over the entire computational 
domain 

 

with integrands that are functions of the electron density F() and functions of the local position G(r).  
Using the interpolation scheme described, these integrals can be

 

found as follows, where 

 

is an electronic 
element domain and ~C

 

is used to mean that the element 

 

is contained in (and specifies) cell C:
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, which have compact support about the nth 

electronic node, is performed as follows.
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Density Functional Theory (DFT)


 

DFT provides a practical framework based on electron density instead of the many-electron Schrodinger wave 
function.  

 Theorems of Hohenberg

 

& Kohn:

 The electron energy E[] is a characterized by the electron density (r).

 A system has a ground electronic density distribution that minimizes its energy.



 

Direct computation of the electron density (and ionic coordinates) is possible via a constrained minimization 
problem:
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Motivation


 

Nanoscale

 

materials provide exciting opportunities for use in devices such as sensors, catalysts, and lasers 
because they can have surprising properties that differ greatly from bulk materials.  These novel properties 
originate from changes in the electronic structure as surface effects or defects deform the crystal structure, and the 
ionic structure of the material is in turn influenced by the electron distribution.  Therefore, to understand the 
structure of nanoscale

 

materials, it is necessary to include calculations of the electronic structure.



 

Density Functional Theory (DFT) methods are commonly used for

 

electronic structure calculations, but the 
computational complexity of these calculations limits the number

 

of atoms that can be included in the calculations 
to only a few thousands of atoms at best, far short of the number of atoms in a nanoparticle.  In order to tackle this 
problem, we develop a degree of freedom reduction technique for solution of the electronic structure of 
nanocrystalline

 

systems in the context of Orbital-Free DFT.  This solution technique has the potential to extend the 
applicability of DFT methods to systems with numbers of atoms far beyond current methods.  



 

The goal of this work is to develop a computational framework to tackle the question of ionic and electronic 
structure in crystalline nanoscale

 

materials systems.

Quasicontinuum-like Approach

Interpolation of the electron 
density and functions of the 
electron density:

We use linear Finite Element shape 
functions 

 

and the values of the density 
in the “representative unit cells”

 

to 
estimate the density value in 
“interpolated unit cells”

 

at the same local 
cell positions.

The  densities need to be evaluated at 
corresponding local positions within the 
unit cells since it is assumed that the 
density varies nearly periodically from 
unit cell to unit cell, as shown in the 
schematic.

Interpolate Across Regions of Near-Periodicity


 

The idea is to take advantage of regions of local 
periodicity

 

in a nanostructure by using a 
quasicontinuum-like method

 

to represent the electron 
density dependent quantities in these regions in terms 
of a few representative atoms, thus reducing the 
degrees of freedom in the solution space of the 
optimization problem described above.



 

The schematic to the right shows how the electron density 
might vary across an array of atoms.  There is a quickly varying

 

subatomic structure for the electron density about the nuclei, i.e. 
across the unit cells (larger black boxes).  However, at the same 
local points (black points) within unit cells in this “lattice region”

 

(red box), the electron density varies slowly.



 

Regions of small deformation in the ionic crystal have less unit 
cell to unit cell variation in the electron density, so the lattice 
regions across which interpolation is performed can be larger.

Quasicontinuum-like Approach

A Lattice Region is composed of a set of unit cells, and can be viewed as similar to finite elements with representative 
cells (nodes) at the corners.

 

The electron density and functions of electron density F

 

can be interpolated as 
follows in terms of density in the representative cells ((rCR

 

)) and linear finite element shape functions CR

 

(r).  Note that 
the electron density is evaluated at the position r within the Cth

 

unit cell domain C

 

.  Using the notation defined in the 
diagram, we have

The shape functions CR

 

(r) are evaluated at the same local position r within the interpolated unit cell C and the 
representative unit cells CR

 

.  This means that as the evaluation position within unit cell C

 

shifts, the representative cell 
“nodes”

 

also shift, so the shape function value does not depend on the local position r.  It only depends on the 
representative and interpolated unit cell reference positions RCR

 

and RC

 

. Thus,
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For simplicity, assume the following notation, where it is assumed that functions of density will be denoted by F and 
functions of position will be denoted by G:
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A Lattice Region is a nearly periodic region having a small deformation of the periodic 
structure. In other words, the non-periodic part of the electron density and functions of the 
electron density are assumed to be smoothly varying macroscopic fields modified by an 
otherwise periodic density.

Therefore, the quasicontinuum-like interpolation expression for the functions of electron density becomes

Quasicontinuum-like interpolation of F((r)) using lattice level shape functions CR

 

gives:

The discretized

 

energy and its gradient required for the optimization problem can now be written as 
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