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Abstract 
Compressive Sensing (CS) is a novel theory states that sparse signals can be recovered from only a few 

measurements far below that dictated by the Nyquist sampling theorem. To recover the signal, one needs 

to find the sparse solution to an under-determined linear system. When the measurements are 

contaminated by noise, an unconstrained minimization problem  𝑃0,𝜆  is often considered. Since it is NP 

hard to solve, we try to solve an approximation of  𝑃0,𝜆 ,  𝑃𝑝,𝜆  with 0 < 𝑝 ≤ 1, using an Iterative Re-

weighted Least Square  (IRLS) algorithm. We discuss the convergence properties of this algorithm and 

provide several numerical results. Our algorithm is robust in the presence of noise and capable of 

recovering signals that are less sparse than possible with the best alternate approaches.  

Introduction 
A. Overview of Compressive Sensing 

 Many signals are compressible: sparse/can be sparsely represented by a proper dictionary. 

 CS theory: one can often recover compressible signals from far fewer measurements than 

traditional methods. 

 CS applications: compressive imaging, medical imaging, geophysical data analysis, etc. 

B. Statement of the Problem 
Suppose 𝑁 < 𝑀, 𝐜 ∈ RM is the signal to be recovered, 𝐟 ∈ RNis the measurement vector and 𝐷 ∈ RM×N  

is the sampling matrix, usually a random matrix. In this poster, 𝐷  is a random matrix generated 

from 𝒩 0,1 . To recover 𝐜 from 𝐟, one must solve the following, 

 𝑃0                        min ∥ 𝐜 ∥0 , subject to        𝐷𝐜 = 𝐟 

In this problem, sparseness is measured by the ℓ0 norm of the signal. Weaker forms of measurements 

are ℓ1 , ℓ𝑝  norms with 0 < 𝑝 < 1. See Fig 1. In practice, noise usually exists during the sampling process 

so the following unconstrained minimization is often considered, 

 𝑃0,𝜆                                min 𝜆 ∥ 𝐜 ∥0+
1

2
∥ 𝐟 − 𝐷𝐜 ∥2

2 

The Lagrange multiplier λ controls the trade off between the sparsity and quality of fit. 

C. Existent Recovery Algorithms 
 Greedy Algorithms: GA iteratively solves a set of approximation problems. OMP and its 

improved versions have been proved to converge to a global optimal solution under some 

strict conditions. However, they are efficient only in recovering very sparse signals. 

 BP/BPDN: These algorithms replace the ℓ0  norm by ℓ1  norm and solve the resulting 

convex problems. Algorithms include Linear Programming algorithms and iterative 

thresholding methods, etc. LP algorithms are robust and stable but computational burden-

some. Iterative thresholding algorithms are faster but cannot recover less sparse signals. 

 Non-convex Techniques: These algorithms replace the ℓ0 norm by ℓ𝑝  norm with 0 < 𝑝 <

1. The advantage is that the resulting problem is closer to  𝑃0,𝜆  than  𝑃1,𝜆 . Intuitively, 

they can recover less sparse signals than the previous two. Due to the fact that the 

problem is now non-convex, one cannot avoid converging to local minimum. 

Fig 1. Unit-balls of different norms. Blue: ℓ1 norm; red: ℓ0.5 norm; 

black: ℓ0.25 norm. Four red circles: ℓ0 norm. 

IRLS based Algorithm 
A. IRLS-𝑝 Algorithm 

Since it is NP hard to solve  𝑃0,𝜆 , we try to solve the following instead, 

 𝑃𝑝,𝜆                                min 𝜆 ∥ 𝐜 ∥𝑝+
1

2
∥ 𝐟 − 𝐷𝐜 ∥2

2 ,   0 < 𝑝 ≤ 1 

Introduce the following functional 

𝒯𝑝 𝐜, 𝐰, 𝜖 ≔
𝜆
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where w is the weight vector and 𝜖 is a regularization parameter. We update c, w alternatively to ensure 

that the value of the functional decreases. Check Listing 1 for formal description. The parameter 𝜖 is 

initially set to 𝜖0 = 1. When the sequence c𝑛  converges, 𝜖𝑛+1 =
𝜖𝑛

10
. Otherwise, it remains constant. 

Algorithm: IRLS-𝒑 

       A. Initialize 𝐜0, 𝜖0 > 0, calculate 𝑤i
0 =   𝑐𝑖

0 2 + 𝜖0
2 

−
2−𝑝

𝑝  

       B. At iteration n 

                   Update cn+1 = argmin 𝒯𝑝 𝐜, 𝐰𝑛 , 𝜖𝑛  by solving 

 𝜆𝑝𝑊𝑛 + 𝐷𝑇𝐷 𝐜𝑛+1 = 𝐷𝑇𝐟,𝑊𝑛 = 𝑑𝑖𝑎𝑔{𝑤𝑖
𝑛} 

                   Evaluate 𝜖𝑛+1 such that 𝜖𝑛+1 ≤ 𝜖𝑛 (as previously described) 

                   Update 𝐰n+1 = argmin 𝒯𝑝 𝐜
𝑛+1 , 𝐰, 𝜖𝑛   

𝑤𝑖
𝑛+1 =   𝑐𝑖

𝑛+1 2 + 𝜖𝑛+1
2  −

2−𝑝
2  

       C. Terminate the algorithm when 𝐜n  converges and 𝜖𝑛  reaches its minimal 

Listing 1. IRLS-𝑝 for approximating  𝑃𝑝,𝜆  

B. Convergence of the algorithm 

Given 𝑓𝜖 𝐜  and 𝑔𝜖 𝐜  as the followings, we proved convergence properties as stated in Table 1: 

𝑓𝜖 𝐜 = 𝜆  𝑐𝑗
2 + 𝜖2 
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2 +
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These two functions are good approximations to   𝑃𝑝,𝜆 . As 𝑝 → 0  , 𝑔𝜖  approximates  𝑃0,𝜆  better. 

Intuitively, we expect our algorithm with 𝑝 < 1 to recover less sparse signals than greedy algorithms 

and BP methods. In addition, we have proved that when   𝑝 = 1,  ∥ 𝐜ϵ− 𝐜⋆ ∥2
2≤ 2𝐴𝑀𝜖 , where c⋆ 

minimizes  𝑃1,𝜆 . 

 𝑝 = 1  0 < 𝑝 < 1 

Convergence  

(lim𝜖𝑛 = 𝜖 > 0) 

Converges to c𝜖 , a global 

minimizer of 𝑓 𝜖(𝐜) 
Converges to c𝜖 , a local minimizer of 

𝑔𝜖(𝐜) 

Advantage Global minimum Better chance to recover solution with 

less sparsity; 

Converges faster when 𝑝 is smaller 

Table 1. Convergence properties of IRLS-𝑝. Comparison between the cases 𝑝 = 1 and less. 

Numerical Results 
A. Exact Recovery from Noise-Free Measurements 

We conducted numerical experiments to evaluate algorithms performance to recover the original signal 

from noise-free measurements. We want to test whether perfect recovery is possible from a low number 

of samples. To this end, we set 𝜆 = 10−8. Let the length of 𝐜 be 512 and the number of samplings be 

256 and generate a random signal 𝐜 with sparsity 128, i.e., 128 entries are non-zero. The value for 𝑝 is 

set to 0.01, 0.5, 0.75, 1. For 20 different cases, the signals are almost perfectly reconstructed. However, 

for larger 𝑝, more iterations are required for convergence and the error is larger.  
Remark: This signal is not very sparse. GA cannot recover it and BP only reach the accuracy of IRLS-1. 

      
Fig 2. Left: Recovery of an 128-sparse signal. Right: Decreasing of ∥ 𝐜recovered − 𝐜exact ∥2

2  for different 𝑝. 

B. Recovery from Noisy Measurements 

We try to illustrate the stable approximation when 𝐟 is noisy. Let 𝐟 = 𝐷𝐜 + 𝐧, 𝐧 is Gaussian noise. The 

result of one experiment is illustrated in Fig 3. The length of the measurement vector is 128, and is 

contaminated with noise of variance 0.03. If we still require  𝐟 = 𝐷𝐜 , (let 𝜆  be small enough), the 

recovered signal is mildly affected by the noise. Setting 𝜆 properly leads to better recovery.  

We then fixed the number of measurements to be 128, let the sparsity of the signal range from 2 to 50 

(where exact recovery is possible for the noise-free case), and evaluate the SNR of the recovered signal 

for the output of 𝜆 = 10−8 and 𝜆 = 0.02 respectively (noise variance remains 0.03 for each experiment). 

The enhancement of SNR is illustrated in Fig 4. We also calculated the noise reduction, which is not 

shown here. The noise reduction is about 80% for very sparse signals and almost linearly decreases to 20% 

for denser signals. For all experiments, we use IRLS-0.5. 
  

 
Fig 3. Left: Recovered assuming no noise exists. Right: Recovered with λ chosen properly. 

 

  
Fig 4. Horizontal axis: Ratio between sparsity and number of measurements. Vertical axis: SNR enhancement. 

For a fixed sparsity, 20 cases are evaluated and averaged. 

Discussion 
We applied an IRLS-based algorithm to the CS problem. It outperforms other algorithms in recovering 

less sparse signals. It is also robust in the presence of noise. Our algorithm is slower than GA and 

iterative thresholding algorithms. To the best of our knowledge, we are the first to provide convergence 

analysis for IRLS based algorithm solving the unconstrained minimization in CS. A related work of 

Daubechies discusses a similar algorithm that solves the constrained minimization  𝑃0 , which is not 

suitable to recover signals from noisy samplings. 
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Definition of the norms ∥⋅∥0 , ∥∙∥1 , ∥∙∥𝑝, 0 < 𝑝 < 1  

 

 


