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Predictive uncertainty is always quantified using confidence/probability

 

intervals constructed 
around predictions. The confidence intervals are evaluated using

 

regression inferential statistics, while 
the probability intervals are obtained using Bayesian methods such as Markov Chain Monte Carlo 
techniques. These two approaches are conceptually different and only mathematically equivalent 
under certain conditions. Using simple test cases, we found that, for linear models, the two types of 
intervals are mathematically equivalent with proper choice of prior probability. However, for 
nonlinear models, regardless of choice of prior probability, the

 

two types of intervals are always 
different; the discrepancy depends on the model total nonlinearity. This work was then extended to a 
controlled numerical experiment of groundwater flow modeling developed based on Hill et al. (1998). 
For the complex synthetic groundwater problem, the MCMC probability intervals are always 
narrower than the confidence intervals obtained using linear/nonlinear regression methods. The 
results of this study provides theoretical basis of quantifying predictive uncertainty. 

Abstract

Confidence Intervals and Probability Intervals

Complex Synthetic Groundwater Problem

Simple Test Cases

Relationship between Two Intervals

Confidence interval:

 

The Frequentist confidence interval is interpreted in the context of a large 
number of different data sets. The data sets differ in the random error realization. If each data set was 
used to produce one confidence interval, 95% of the calculated confidence intervals would include 
the true value of parameter. In this philosophy, 95% is not a probability, but percent of the time in 
repeated sampling that the confidence intervals contain true parameter.

Probability interval: In Bayesian statistics, a parameter is thought of as a random variable with its 
own distribution rather than as a constant. The posterior distribution summarized the state of 
knowledge about unknown parameters conditional on the prior and current data. The amount is 
measured by a probability interval which is a probabilistic region around posterior statistics. In this 
philosophy,  95% is the posterior probability that parameter lies in the interval. 

For noninformative priors,                                and   , the posterior distribution of           
is multivariate t-distribution. Thus, its                    probability interval is:

(3)

same with the linear confidence interval in equation (1).

For

 

informative conjugate prior

 

with                              , and assume σ2

 

is known, the posterior 
distribution of           is multivariate normal. Thus, its     probability interval is:

(4)

As                 , the probability interval reduces to the form of equation (2). 
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For a linear model:                    with parameters β, true errors

 

, where

 

,

The                    linear confidence interval for prediction

 

is 

(1)

when σ2

 

is unknown; and

(2)

when σ2

 

is known.
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In general, for a model:                          with parameters β, true errors

 

with known       

Based on Bayesian theorem, with noninformative prior, the posterior density of  parameter β

 

is 

(5)
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Consider a Taylor series expansion of                      about

 

to the second order term, where   
maximizes                     . Then equation (5) is approximated by:

(6)
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When the model is linear with                the posterior density                                  exactly 
with                           . In this case, the probability interval of         from posterior distribution 
is mathematically equivalent with its confidence interval in equation (2) from regression.
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When the model is nonlinear, equation (6) approximates posterior

 

density              by 
ignoring three and higher order terms. If the model is highly nonlinear, as indicated by large 
total nonlinearity, ignoring the higher order terms will cause significant error. In this case, 
the confidence intervals and probability intervals may have large discrepancy. 

( | )p β y

Linear test problems:  linear model                      , with parameters a and b; true errors   
; we consider conjugate prior of two parameters with                 .                         

Nonlinear test problem: nonlinear model                              , with parameters

 

a and b; 
true errors                  , we consider conjugate prior of two parameters with                .

Purpose:

 

compare confidence interval using regression and probability interval using 
Markov Chain Monte Carlo of prediction at x=30.
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For linear models, confidence intervals and probability intervals are equivalent; but for 
nonlinear models, the values of these two types of intervals are

 

different. In the simple 
test case, probability interval is smaller than confidence interval.

Synthetic groundwater problem:

 

one true model and three alternative models with 
different complexity.

Purpose:

 

compare confidence interval using regression and probability interval using 
Markov Chain Monte Carlo of two predictions: drawdown at pumping

 

well P3 and the 
percent streamflow change at gauge site G2.

Figure 3: (a) true model; (b) true 
horizontal hydraulic conductivity; 
and the horizontal hydraulic 
conductivity distributions based on 
(c) model 3Z and (d) model Int.

Figure 4: Predictions and confidence 
intervals for (a) streamflow change and (c) 
drawdown with 2 flow observations; (b) 
streamflow change and (d) drawdown with 
18 flow observations. The straight lines in 
each figure represent the true prediction.
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(a) 2 Flows Linear
Nonlinear
MC
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(c) 2 Flows Linear
Nonlinear
MC
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(b) 18 Flows Linear
Nonlinear
MC
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(d) 18 Flows Linear
Nonlinear
MC

Figure 1: Cumulative distribution 
functions of parameters and 
prediction based on regression and 
Bayesian theory for parameter a, 
parameter b, and prediction y in both 
the linear test case (a, b, and c); and 
the nonlinear test case (d, e, and f).

Figure 2: The nonlinear confidence interval limits 
(red dots), the minimum and maximum values of 
prediction (red lines), the confidence region of 
parameter set bounded by the objective function 
goal (black contour); the probability interval limit 
(blue dot), where the upper 2.5% and lower 2.5% 
prediction values include the samples indicated by 
green dots, and the median 95% prediction values 
include the samples indicated by yellow dots. 
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Nonlinear ModelLinear Model
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For the complex synthetic groundwater problem, the MCMC probability intervals are 
always narrower than the confidence intervals obtained with regression methods. 
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