
A Multi-GPU,
Multi-CPU Implementation of RBF-FD

for PDE Solutions
Evan F. Bollig, Advisor: Gordon Erlebacher

Department of Scientific Computing, Florida State University
bollig@scs.fsu.edu

Abstract

D URING the last few decades, numerical methods that
use collections of radially symmetric, univariate func-

tions for approximation have surfaced for PDE solutions.
Such functions are referred to as Radial Basis Functions
(RBFs) and have been successfully employed in spectral,
pseudo-spectral and localized modes. RBF methods are
ideal for unstructured or scattered nodes; e.g., node sets
generated with centroidal Voronoi tessellation.

One of the newest areas of research leverages RBFs in
the calculation of weights for generalized finite difference
stencils in a scheme referred to as RBF-FD. RBF-FD ad-
dresses a major concern with other RBF methods—namely,
ill-conditioning.

The RBF-FD method exhibits a large amount of parallelism,
which we target in a multi-CPU, multi-GPU framework for
solving 2D and 3D PDEs. To span multiple CPUs and
multiple GPUs, an Additive Schwarz domain decomposi-
tion method is used to partition the physical domain and
distribute work across processors. Each processor then
works with a GPU to offload computationally demanding
tasks. Since individual RBF-FD stencils may span multiple
subdomains, inter-processor communication is required at
each iteration.

Details of our implementation, along with case studies solv-
ing elliptic and parabolic PDEs using implicit and explicit
schemes, are provided. Our end goal is to use this code for
Tsunami and other geophysical simulations.

1. Radial Basis Functions

Definition 1 A function φ : RD → R is radial provided a
univariate function ϕ : [0,∞) → R exists such that

φ(x) = ϕ(�
����x− xj

����) = ϕ(� ||r||)

where xj is the center or point of origin for the function, and
||·|| is some norm (typ. �2) on RD. � is a support scaling
parameter [2].

2
0

2

2

0

2
0

0.5

1

x

GA

y

(r)

(a) e−(�r)2
2

0
2

2

0

2

0.4

0.6

0.8

1

x

IMQ

y

(r)

(b) 1√
1+(�r)2

2
0

2

2

0

2
1

2

3

x

MQ

y

(r)

(c)
�
1 + (�r)2

Figure 1: Commonly used Radial Basis Functions

2. RBF Interpolation

GIVEN a set of sample values {u(xj)}
N
j=1 on a discrete

set of nodes X = {xj}
N
j=1, weighted combinations of

RBFs construct an approximation to the continuous u:

u(x) =
N�

j=1

cjφj(x) +
M�

l=1

dlPl(x), Pl(x) ∈ ΠD
m

M =
�m+D

D

�
. In 2D (m=1): P = 1, x, y. This is the system

Φc + Pd = u(x)

and additional constraints ensure positive definiteness:
PTc = 0.

The resulting system is:
�

Φ P
PT 0

��
c
d

�
=

�
u(x)
0

�

Ac = u.

With weights available, linear differential operators, Lf (x)
(e.g., L = du

dx), can be approximated:

Lu =
N�

j=1

cjLΦj(x) +
M�

l=1

dlLPl(x) =
�
LΦ LP

�� c
d

�

= ALc
= ALA

−1u

• RBF Collocation methods use this approach

Figure 2: Linear combinations of φ are used for approxi-
mation of u and its derivatives.

3. RBF-FD

WE solve PDEs using a generalized FD scheme called
RBF-FD [3]. Derivatives of u(x) are weighted combi-

nations of a small neighborhood of Ns nodes (i.e., a stencil
with Ns � N):

Lu(x1) ≈

Ns�

j=1

cju(xj) (1)

where cj are unknown, but obtained by solving:

Lφj(x1) =
Ns�

i=1

ciφj(xi) for j = 1, 2, ..., Ns. (2)

If we add constraints for positive definiteness as above we
get:

�
Φ P
PT 0

��
c
d

�
=

�
Lφ(x1)

0

�

• Similar to small scale RBF Interpolation; different RHS
• Find stencil weights using only φ and analytic derivatives.
• Apply weights to u(xj) to get derivative quantity at u(x1)

(i.e., stencil center)

4. Implicit PDEs

THE RBF-FD method was used in an implicit scheme to
solve Poisson’s equation with non-uniform diffusivity:

∇ · [D(T, r)∇T (r)] = F
∇D ·∇T +D∇2T =

where r = (x, y)T . In Figure 3 we consider the exact solu-
tion:

T (r) = 100000 ∗ [sin(||r||− 1)(||r||− 0.5) + π)
+(||r||− 1)(||r||− 0.5)]

over a 2D annulus with non-uniform diffusivity: D(T, r) = y.

Figure 3: Example PDE solved using RBFFD. Poisson’s
equation with non-uniform diffusion.

• Nodes near boundary (but not on) are an issue — these
have lopsided stencils

• Sparse matrix of weights, L (i.e., Lu = F), is NOT sym-
metric

• Uses BiCGStab solver in ViennaCL (a sparse matrix
GPU toolkit written in OpenCL) [1]

• Limited to single GPU, single CPU

5. Explicit PDEs

AN explicit PDE solver has been implemented for time
dependent problems like the diffusion equation:

∂T (r, t)

∂t
= ∇ · [D(T, r)∇T (r, t)]

• Stencil weights are the same as implicit scheme, but
avoids linear system solve for solution

• OpenCL kernel applies stencils weights to calculate
derivatives

• CPU uses derivatives to advance timestep

Figure 4: Speedup factors achieved with unoptimized
OpenCL on NVidia and ATI hardware. NVidia GTX 480
(Fermi) with 2x 4core Xeon @ 2.93 GHz, vs. ATI FirePRO
V7800 with 2core Duo @ 3.0 GHz. (Left) Full timestep with
CPU and GPU kernel. (Right) Apply weights kernel only
(Subset of timestep).

6. Domain Decomposition

WE implement a similar Additive Schwarz physical do-
main decomposition as [4] to parallelize computation

across multiple processes (each associated with a GPU).
Stencil sets are structured in memory to enable overlapping
computation and communication for increased efficiency.
A stencil centered on one CPU/GPU may contain nodes
stored on other CPU/GPUs. Intermediate updates for ghost
nodes are passed across subdomains using MPI.

G : all nodes received and contained on the GPU g
Q : stencil centers managed by g (equivalently, stencils computed by g)
B : stencil centers managed by g that require nodes on another GPU
R : nodes required by g that are managed by another GPU
O : nodes managed by g that are sent to other GPUs

GPU1 GPU2

X

Y

Z

G

x, y, z ∈ G x, y ∈ Q

y ∈ B z ∈ R

y ∈ O G = R ∪Q

x ∈ Q\B B ⊂ Q

Set order in memory:
G = {Q\O O R}

Table 1: Stencil set partitioning by compute node (GPU1).

Multi-stage derivative calculation:

u�k = (ADA
−1)kuk,Q\O + (ADA

−1)kuk,O + (ADA
−1)kuk,R

• First and second products do not require communication
and can be processed immediately

• Last product can block until communication finishes
• Benchmarks from acm.sc.fsu.edu (GPU cluster) and

HPC’s new GPU nodes are forthcoming

7. Conclusions & Future Work

Introduced the RBF-FD method and two implementations:
• an implicit scheme implementation using ViennaCL
• a parallel, multi-GPU explicit implementation using

OpenCL
– current speedup factor is small per time-step
– consider both NVidia and ATI specific optimizations in

the near future
– offload more computation to the GPU
– need to amortize cost of MPI communication by over-

lapping GPU computation
– will be one of first test codes to benchmark on new HPC

GPU nodes

8. Acknowledgements

This work is supported by NSF award No. #0934331: “CMG
Collaborative Research: Fast and Efficient Radial Basis
Function Algorithms for Geophysical Modeling on Arbitrary
Geometries”.

References

[1] ViennaCL. http://viennacl.sourceforge.net/.

[2] FASSHAUER, G. E. Meshfree Approximation Methods with MATLAB, vol. 6 of In-
terdisciplinary Mathematical Sciences. World Scientific Publishing Co. Pte. Ltd., 5
Toh Tuck Link, Singapore 596224, 2007.

[3] TOLSTYKH, A. I., AND SHIROBOKOV, D. A. On using radial basis functions in a
“finite difference mode” with applications to elasticity problems. In Computational
Mechanics, vol. 33. Springer, December 2003, pp. 68 – 79.

[4] YOKOTA, R., BARBA, L., AND KNEPLEY, M. G. PetRBF — A parallel O(N) algo-
rithm for radial basis function interpolation with Gaussians. Computer Methods in
Applied Mechanics and Engineering 199, 25-28 (May 2010), 1793–1804.

Dept. of Scientific Computing, Computational Xposition ’11, 14 April 2010, Tallahassee, FL

