‘ Abstract |

URING the last few decades, numerical methods that

use collections of radially symmetric, univariate func-
tions for approximation have surfaced for PDE solutions.
Such functions are referred to as Radial Basis Functions
(RBFs) and have been successfully employed in spectral,
pseudo-spectral and localized modes. RBF methods are
ideal for unstructured or scattered nodes; e.g., node sets
generated with centroidal Voronoi tessellation.

One of the newest areas of research leverages RBFs in
the calculation of weights for generalized finite difference
stencils in a scheme referred to as RBF-FD. RBF-FD ad-
dresses a major concern with other RBF methods—namely,
ilI-conditioning.

The RBF-FD method exhibits a large amount of parallelism,
which we target in a multi-CPU, multi-GPU framework for
solving 2D and 3D PDEs. To span multiple CPUs and
multiple GPUs, an Additive Schwarz domain decomposi-
tion method is used to partition the physical domain and
distribute work across processors. Each processor then
works with a GPU to offload computationally demanding
tasks. Since individual RBF-FD stencils may span multiple
subdomains, inter-processor communication is required at
each iteration.

Details of our implementation, along with case studies solv-
ing elliptic and parabolic PDEs using implicit and explicit
schemes, are provided. QOur end goal is to use this code for
Tsunami and other geophysical simulations.

1. Radial Basis Functions |

Definition 1 A function ¢ : RP — R is radial provided a
univariate function ¢ : [0,00) — R exists such that

olx) = ple ||z —a4]]) = ple||r]])
where x ; is the center or point of origin for the function, and

||| is some norm (typ. ¢s) on RP. ¢ is a support scaling
parameter [2].
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Figure 1: Commonly used Radlial Basis Functions

‘ 2. RBF Interpolation |

GIVEN a set of sample values {u(z;)};"; on a discrete
N

set of nodes X = {:z;j}jzl, weighted combinations of

RBFs construct an approximation to the continuous u:

N M
ulw) = ejj(x) + ) diPi(x),  Px) €Il
j=1 =1
M =("1P). In 2D (m=1): P = 1, z,y. This is the system
bc + Pd = u(x)
and additional constraints ensure positive definiteness:
Ple = 0.
The resulting system is:
o P c\ [ u(x)
Proj\d)  \ 0
Ac = u.

With weights available, linear differential operators, Lf(z)
(e.g., £ = 94, can be approximated:

N M
Lu = Cj/:,q)](il?> + Zdlﬁpl(x) = [L(D /:P} (2)
j=1 =1
= A,c
— A,A

e RBF Collocation methods use this approach
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Figure 2: Linear combinations of ¢ are used for approxi-
mation of v and its derivatives.
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‘ 3. RBF-FD |

E solve PDEs using a generalized FD scheme called

RBF-FD [3]. Derivatives of u(z) are weighted combi-
nations of a small neighborhood of N, nodes (i.e., a stencil
with Ny < N):

Ny

Lu(z]) ~ chu(a;j) (1)

j=1
where c; are unknown, but obtained by solving:

N
Loj(x1) = cipjl;) forj=1,2,.., Ns. (2)
i=1
If we add constraints for positive definiteness as above we
get:
O P|[fc\ [ Lp(x)
Pro|\d) 0

e Similar to small scale RBF Interpolation; different RHS
¢ Find stencil weights using only ¢ and analytic derivatives.

e Apply weights to u(z;) to get derivative quantity at u(z)
(i.e., stencil center)

‘ 4. Implicit PDEs |

THE RBF-FD method was used in an implicit scheme to
solve Poisson’s equation with non-uniform diffusivity:

V- [D(T,r)VT(r) = F
VD -VT + DV?*T =

where r = (z,%)’. In Figure 3 we consider the exact solu-
tion:

T(r) = 100000 * [sin([|r]| — 1)(||r]| — 0.5) + )
+(|[r]l = D([[z|[ = 0.5)]

over a 2D annulus with non-uniform diffusivity: D(T,r) = y.
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Figure 3: Example PDE solved using RBFFD. Poisson’s
equation with non-uniform diffusion.

e Nodes near boundary (but not on) are an issue — these
have lopsided stencils

e Sparse matrix of weights, L (i.e., Lu = F'), is NOT sym-
metric

e Uses BiCGStab solver in ViennaCL (a sparse matrix
GPU toolkit written in OpenCL) [1]

e Limited to single GPU, single CPU

‘ 5. Explicit PDEs |

N explicit PDE solver has been implemented for time
dependent problems like the diffusion equation:
JT(r,t)
ot

e Stencil weights are the same as implicit scheme, but
avoids linear system solve for solution

e OpenCL kernel applies stencils weights to calculate
derivatives

e CPU uses derivatives to advance timestep

— V- [D(T,v)VT(r,1)]
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Figure 4: Speedup factors achieved with unoptimized
OpenCL on NVidia and ATl hardware. NVidia GTX 480
(Fermi) with 2x 4core Xeon @ 2.93 GHz, vs. ATl FirePRO
V7800 with 2core Duo @ 3.0 GHz. (Left) Full timestep with
CPU and GPU kernel. (Right) Apply weights kernel only
(Subset of timestep).

6. Domain Decomposition |

E implement a similar Additive Schwarz physical do-

main decomposition as [4] to parallelize computation
across multiple processes (each associated with a GPU).
Stencil sets are structured in memory to enable overlapping
computation and communication for increased efficiency.
A stencil centered on one CPU/GPU may contain nodes
stored on other CPU/GPUs. Intermediate updates for ghost
nodes are passed across subdomains using MPI.

. all nodes received and contained on the GPU ¢
. stencil centers managed by ¢ (equivalently, stencils computed by g)
. stencil centers managed by ¢ that require nodes on another GPU
: nodes required by ¢ that are managed by another GPU

: nodes managed by g that are sent to other GPUs

CRBIOGQ

x,Yy,2 €Q x,y € Q
yeB z€R
yeO G=RUQ
r € O\B BcCO
Set order in memory:
G={Q\0 O R}

Table 1: Stencil set partitioning by compute node (GPU1).

Multi-stage derivative calculation:

up = (ADA_l)kUk,Q\O +(ApA Yo + (ApA e »

e First and second products do not require communication
and can be processed immediately

e Last product can block until communication finishes

e Benchmarks from acm.sc.fsu.edu (GPU cluster) and
HPC’s new GPU nodes are forthcoming

7. Conclusions & Future Work |

ntroduced the RBF-FD method and two implementations:
e an implicit scheme implementation using ViennaCL

ea parallel, multi-GPU explicit implementation using
OpenCL

— current speedup factor is small per time-step

—consider both NVidia and ATI specific optimizations in
the near future

— offload more computation to the GPU

—need to amortize cost of MPlI communication by over-
lapping GPU computation

— will be one of first test codes to benchmark on new HPC
GPU nodes
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This work is supported by NSF award No. #0934331: “CMG
Collaborative Research: Fast and Efficient Radial Basis
Function Algorithms for Geophysical Modeling on Arbitrary
Geometries”.

‘ References I

[1] ViennaCL. http://viennacl.sourceforge.net/.

[2] FASSHAUER, G. E. Meshfree Approximation Methods with MATLAB, vol. 6 of In-
terdisciplinary Mathematical Sciences. World Scientific Publishing Co. Pte. Ltd., 5
Toh Tuck Link, Singapore 596224, 2007.

[8] TOLSTYKH, A. |., AND SHIROBOKOV, D. A. On using radial basis functions in a
“finite difference mode” with applications to elasticity problems. In Computational
Mechanics, vol. 33. Springer, December 2003, pp. 68 — 79.

[4] YOKOTA, R., BARBA, L., AND KNEPLEY, M. G. PetRBF — A parallel O(N) algo-
rithm for radial basis function interpolation with Gaussians. Computer Methods in
Applied Mechanics and Engineering 199, 25-28 (May 2010), 1793—-1804.

Dept. of Scientific Computing, Computational Xposition *11, 14 April 2010, Tallahassee, FL



