Analysis and Implementation of Stochastic Collocation Method for Parabolic Partial Differential Equations with Random Input Data

Guannan Zhang
Advisor: Max Gunzburger

Introduction

We consider the following linear parabolic stochastic PDE,

$$
\begin{align*}
\partial_{t} u(t, x, \omega)-\nabla \cdot[a(x, \omega) \nabla u(t, x, \omega)] & =f(t, x, \omega) \quad \text { in } \quad[0, T] \times D \times \Omega, \\
u(t, x, \omega) & =0 \quad \text { on } \quad[0, T] \times \partial D \times \Omega \tag{1}\\
u(0, x, \omega) & =u_{0} \quad \text { on } \quad D \times \Omega,
\end{align*}
$$

where $D \in \mathbb{R}^{d}, \Omega$ is the sample space and $u: \Omega \times[0, T] \times \bar{D} \rightarrow \mathbb{R}$. The symbol ∇ means differentiation with respect to the spatial variable $x \in D$. Unlike previous literatures on this issue, we consider a wider range of situations as follows:

- The coefficient and the forcing term are represented not only by KL expansion but also by a nonlinear function of a random vector;
- Both bounded and unbounded random variables are considered;
- Errors are analyzed for both a semi-discrete scheme and a fully-discrete scheme for the parabolic PDE (1).

The error of the numerical solution splits into $\varepsilon=\left(u-u_{h}\right)+\left(u_{h}-u_{h, p}\right)$. We mainly analyze the second term, i.e. the interpolation error in the probability space and obtain the first term by classic finite element analysis. Moreover, as long as u_{h} is analytic with respect to the random parameters, the interpolation error will decay exponentially by using typical approximation theories. Therefore, in what follows the analyticity of u_{h} is the key point of our analysis. The procedure of the error analysis is shown in the flowchart below:

The Stochastic Collocation Method

For a fixed $T>0$, the weak formulation of (1) has the following three equivalent forms:

$$
\begin{gather*}
\int_{D} \mathbb{E}\left[\partial_{t} u v\right] d x+\int_{D} \mathbb{E}[a \nabla u \cdot \nabla v] d x=\int_{D} \mathbb{E}[f v] d x \quad \forall v \in H_{0}^{1}(D) \otimes L_{P}^{2}(\Omega) \\
\mathfrak{} 1 K L-\text { expansion } \\
\int_{\Gamma} \int_{D} \partial_{t} u v \rho d y+\int_{\Gamma} \int_{D}[a \nabla u \cdot \nabla v] \rho d y=\int_{\Gamma} \int_{D} f v \rho d y \quad \forall v \in H_{0}^{1}(D) \otimes L_{\rho}^{2}(\Gamma) \tag{2}\\
\hat{\imath} \\
\int_{D} \partial_{t} u(y) v d x+\int_{D} a(y) \nabla u(y) \cdot \nabla v d x=\int_{D} f(y) v d x \quad \forall v \in H_{0}^{1}(D) \otimes L_{\rho}^{2}(\Gamma), \rho-\text { a.e. in } \Gamma
\end{gather*}
$$

Then, an approximation is constructed with the stochastic collocation method by

- For a fixed T, construct an approximation $u_{h}(T, \cdot, y): \Gamma \rightarrow H_{h}(D)$ by projecting (2) onto the subspace $H_{h}(D)$, i.e. for each $y \in \Gamma$

$$
\begin{equation*}
\int_{D} \partial_{t} u_{h}(y) v_{h} d x+\int_{D} a(y) \nabla u_{h}(y) \cdot \nabla v_{h} d x=\int_{D} f(y) v_{h} d x \quad \forall v_{h} \in H_{h}(D) . \tag{3}
\end{equation*}
$$

- Collocating (3) on the zeros of orthogonal polynomials and building the discrete solution $u_{h, p} \in H_{h}(D) \otimes \mathcal{P}_{p}(\Gamma)$ by interpolating in y the collocated solutions, i.e

$$
\begin{equation*}
u_{h, p}(T, x, y)=\mathcal{I}_{p} u_{h}(T, x, y)=\sum_{j_{1}=1}^{m_{1}} \cdots \sum_{j_{d}=1}^{m_{d}} u_{h}\left(T, x, y_{j_{1}}, \cdots, y_{j_{d}}\right)\left(l_{j_{1}} \otimes \cdots \otimes l_{j_{d}}\right) . \tag{4}
\end{equation*}
$$

where, for instance, the function $\left\{l_{j_{k}}\right\}_{k=1}^{d}$ can be taken as Lagrange polynomials.

Error Analysis of the Semi-discrete Scheme

Lemma 1 For any $T>0$, if the solution $u\left(T, x, y_{n}, y_{n}^{*}\right)$ is a function of $y_{n}, u: \Gamma_{n} \rightarrow C_{\sigma_{n}^{*}}^{0}\left(\Gamma_{n}^{*} ; L^{2}(L\right.$ then the k-th derivative of $u(T, x, y)$ with respect to y_{n} satisfies
$\left\|\partial_{y_{n}}^{k} u(T, y)\right\|_{L^{2}(D)} \leq C k!\left(2 \gamma_{n}^{k}\right)$
where $\gamma_{n}>0, C$ depends on $\|f(y)\|_{L^{2}(0, T ; D)},\left\|u_{0}(y)\right\|_{L^{2}(D)}, a_{\text {min }}$ and the Poincaré coefficient C_{p}.
Theorem 1 Under Lemma 1, the solution $u\left(t, x, y_{n}, y_{n}^{*}\right)$ as a function of y_{n} admits an analytic extension $u\left(z, y_{n}^{*}\right), z \in \mathbb{C}$, in the region of the complex plane

$$
\begin{equation*}
\Sigma\left(\Gamma_{n}, \tau_{n}\right):=\left\{z \in \mathbb{C}, \operatorname{dist}\left(z, \Gamma_{n}\right) \leq \tau_{n}\right\} \tag{6}
\end{equation*}
$$

with $0<\tau_{n}<1 /\left(2 \gamma_{n}\right)$.

Theorem 2 For a fixed $T>0$, by Theorem 1, there exist positive constants $r_{n}, n=1,2, \cdots, d$, and C which is independent of h and p, such that

$$
\begin{equation*}
\left\|u_{h}(T)-u_{h, p}(T)\right\|_{L^{2}(D) \otimes L_{\rho}^{2}(\Gamma)} \leq C \sum_{n=1}^{d} \beta_{n}\left(p_{n}\right) \exp \left(-r_{n} p_{n}^{\theta_{n}}\right), \tag{7}
\end{equation*}
$$

where if Γ_{n} is bounded, $\theta_{n}=\beta_{n}=1$ and $r_{n}=\log \left[\frac{2 \tau_{n}}{\left|\Gamma_{n}\right|}\left(1+\sqrt{1+\frac{\left|\Gamma_{n}\right|^{2}}{4 \tau_{n}^{2}}}\right)\right]$, if Γ_{n} is unbounded, $\theta_{n}=\frac{1}{2}, \beta_{n}=O\left(\sqrt{p_{n}}\right)$ and $r_{n}=\tau_{n} \delta_{n}$. τ_{n} is smaller than the distance between Γ_{n} and the nearest singularity in the complex plane, as defined in Theorem 1.

Error Analysis of the Fully-discrete Scheme

The fully-discrete Crank-Nicolson scheme of the problem (1) is

$$
\begin{equation*}
\left(\frac{U^{m}-U^{m-1}}{\Delta t}, v\right)+\left(a \frac{\nabla U^{m}+\nabla U^{m-1}}{2}, \nabla v\right)=\left(f\left(t_{m-\frac{1}{2}}\right), v\right), \quad \forall v \in S_{h}, m \geq 1 \tag{8}
\end{equation*}
$$

where S_{h} is the finite element space and $U^{0}=u_{0, h}$.
Lemma 2 If the solution $U^{N}\left(x, y_{n}, y_{n}^{*}\right)$ is a function of $y_{n}, U^{N}: \Gamma_{n} \rightarrow C_{\sigma_{n}^{*}}^{0}\left(\Gamma_{n}^{*} ; L^{2}(D)\right)$, and we define one kind of discrete norm as

$$
\begin{equation*}
M(N, l)=\left[\frac{\Delta t}{2} \sum_{j=1}^{N}\left\|\sqrt{a} \partial_{y_{n}}^{l}\left(\nabla U^{j}+\nabla U^{j-1}\right)\right\|_{L^{2}(D)}^{2}\right]^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

then the k-th derivative of $U^{N}(x, y)$ with respect to y_{n} satisfies

$$
\begin{equation*}
\left\|\partial_{y_{n}}^{k} U^{N}(y)\right\|_{L^{2}(D)} \leq C k!\left(2 \gamma_{n}^{k}\right) \tag{10}
\end{equation*}
$$

where $\gamma_{n}>0, C$ depends on $\|f(y)\|_{L^{2}(0, T ; D)},\left\|u_{0}(y)\right\|_{L^{2}(D)} a_{\text {min }}$ and the Poincare coefficient C_{p}.
Theorem 3 Under Lemma 2, the fully discrete solution $U^{N}\left(x, y_{n}, y_{n}^{*}\right)$ as a function of y_{n} admits an analytic extension $U^{N}\left(z, y_{n}^{*}\right), z \in \mathbb{C}$, in the region of the complex plane
$\Sigma\left(\Gamma_{n}, \tau_{n}\right):=\left\{z \in \mathbb{C}, \operatorname{dist}\left(z, \Gamma_{n}\right) \leq \tau_{n}\right\}$
with $0<\tau_{n}<1 /\left(2 \gamma_{n}\right)$.
Theorem 4 For a positive integer N, consider a uniform partition of $[0, T]$ with $\Delta t=T / N$, by Theorem 3, there exist positive constants $r_{n}, n=1,2, \cdots, d$, and C which is independent of h and p, such that

$$
\begin{equation*}
\left\|U^{N}-U_{p}^{N}\right\|_{L^{2}(D) \otimes L_{\rho}^{2}(\Gamma)} \leq C \sum_{n=1}^{d} \beta_{n}\left(p_{n}\right) \exp \left(-r_{n} p_{n}^{\theta_{n}}\right), \tag{12}
\end{equation*}
$$

where θ_{n}, β_{n} and r_{n} are defined as in Theorem 3.

A Numerical Example

We consider an one-dimensional parabolic PDE:

$$
\begin{align*}
\partial_{t} u-\nabla \cdot(a \nabla u)=f & \text { on }[0, T] \times D \times \Omega, \\
u(t, a, \omega)=0 & \text { on }[0, T] \times \Omega, \\
-a \partial_{n} u(t, b, \omega)=1 & \text { on }[0, T] \times \Omega, \tag{13}\\
u(0, x, \omega)=0 & \text { on } D \times \Omega .
\end{align*}
$$

where

$$
\begin{gathered}
a(x, \omega)=a_{\text {min }}+\exp \left[Y_{1}(\omega) \cos (\pi x)+Y_{2}(\omega) \sin (\pi x)\right] \\
f(t, x, \omega)=100+\exp \left(Y_{3}(\omega) \cos (\pi x)+Y_{4}(\omega) \sin (\pi x)\right)
\end{gathered}
$$

The computational results for the $L^{2}(D)$ approximation error in the expected value $\mathbb{E}[u(T)]$ are shown in the following figure

References

[1] I. Babuška, F. Nobile, R. Tempone, A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data, Siam Journal on Numerical Analysis, 45(2007), pp. 1005-1034
[2] F. Nobile, R. Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients, International Journal for Numerical Methods in Engineering, 80(2009), pp.979-1006

