
The goal of this project is to create interactive tools for scientifically oriented educational games. Enabling students to interact with visualizations
of physical phenomenon can aide in the understanding of complex concepts. To this end we have implemented the Smoothed Particle Hydrodnam-
ics method for fluid simulation. We use OpenCL to enable features in the Blender software that would otherwise not be possible in real-time. We
leverage existing features for game creation and the powerful consumer hardware used for playing games to bring computational science

SMOOTHED
PARTICLE
HYDRODYNAMICS
The Smoothed Particle Hydrodynamics (SPH) method is a meshfree Lagrang-
ian particle method for solving the Navier-Stokes equations. It is highly parallel
in nature since the equations applied to each particle can be done simultane-
osly.
The essential idea behind SPH is the technique of integral approximation of the
fluid at each particle using a smoothing kernel as shown in
 the figure on the right.
This formulation allows for large deformations but makes
dealing with boundary conditions difficult.
Since the position of each particle is updated based on its
neighbors it is important to have an efficient method for
calculating a particle’s neighbors.

We expose many of our simulation parameters to the game creator in the extensible
Blender graphical user interface. The user can determine the number of particles

REAL-TIME FLUID SIMULATION WITH OPENCL

IAN JOHNSON & GORDON ERLEBACHER
 ANDREW YOUNG & MYRNA MERCED

In order to make compelling educational games real-time performance is critical.
The criteria for real-time video games is usually measured as 60 frames per
second, with 30 frames per second being acceptable but not ideal. This means
that our simulation must take no longer than 30 milliseconds to compute an itera-
tion, and preferably under 10 milliseconds. This performance is possible be-
cause we take advantage of the

The following graphs show the performance of our project as compared with
other open source fluid simulators using the same method. Our project is shown
as the blue line and achieves real-time performance with over 100,000 particles
and maintains 30fps with over 250,000 particles. We are currently outperformed
by a CUDA implementation which

FUTURE WORK

ACKNOWLEDGEMENTS

Blender is a very powerful 3D modeling and game development framework used by
millions of people across the globe. In the department of Scientific Computing at
Florida State University, we teach our Introduction to Game and Simulator design
course using the Blender Game Engine due to its large online community, cross-
platform support and rich set of features.

OpenCL is an open, royalty-free standard for cross- platform parallel programming of
modern processors. Currently it is supported by the two largest GPU chip makers for
general purpose GPU computing (NVIDIA and AMD), and is also backed by many of
the largest companies in the computing industry.

Blender is written C with the Game Engine written in C++, using OpenGL for render-
ing. We set out to make a C++ Particle System library that could be developed and
tested standalone, but could easily be linked against and called from Blender. We uti-
lize the OpenCL C++ bindings provided by Khronos to setup and call our OpenCL ker-
nels.

used to simulate the fluid, the time step
and many physical parameters such as
the gas constant or gravity.

The user can use Blender models to
construct the domain as well as arbi-
trary geometry for collision.

Particle emitters and colliding objects
can be controlled through Blender’s
Logic Brick interface or scripted with
Python.

PERFORMANCE

IMPLEMENTATION

USER INTERFACE

we hope to outperform after im-
plementing some known optimi-
zation techniques.
The timings were performed on
a GTX480 without collisions.

Many thanks to Evan Bollig for his guidance and GPU expertise and Mitchell
Stokes for sharing his Blender knowledge. Thanks also to Martin Lindelöf and
Vu Thai for their design talent in contributing to this poster. A special thanks to
the Blender Open Source community who have been very supportive of our ef-
forts.

Framerates of SPH Codes

Our top priority for future work is improving the interaction between our library
and Blender, providing more features for educational game designers. We plan
to improve the user interface as well as creating new ways of emitting and delet-
ing particles.
We have several optimizations we would like to implement including an im-
proved neighbor searching algorithm to speed up particle interaction.
We would like to improve the accuracy of our simulation as well as the accuracy
of collisions. In the future we hope to add rigid body interaction.

INTRODUCTION

