

Boids implementation inside the Blender Game EngineBoids implementation inside the Blender Game Engine
Myrna I. Merced Serrano, Advisor: Gordon Erlebacher

Department of Scientific Computing, Florida State University
mim09c@fsu.edu

Blender is a free modeling/simulation software that has been out since
1993, most used only to create 2D and 3D content. It has recently been
extended to include modeling, texturing, animation, particle simulation,
rendering, game creation, etc. The Blender Game Engine is a very
powerful tool, allowing games to be created without the need for explicit
programming. Although Blender has extensive particle-based tools,
including hair styling, these are absent from the game module. A
submodule of the particle system is a rather sophisticated Boid System. In
this project we intend to incorporate a Boid system inside the Blender
Game Engine, enhancing Blender’s capability, leading to many
opportunities for AI-based algorithms, including Particle Swarm
Optimization, manipulation of crowds, etc. The collective behavior of Boids
is called flocking, which can be characterized as an emergent behavior
caused by following three steering behaviors: separation, alignment, and
cohesion. Boids are commonly used in games as non-player characters
since they can behave like real entities by themselves without the need for
explicit control. Our implementation involved the development of a new
Modifier inside Blender. This modifier is called RTPS because it depends
on the library Real-Time Particles System (RTPS) developed by Ian
Johnson as part of his work on Smooth Particle Hydrodynamics (SPH).
RTPS is a library that currently defines two different particle systems: SPH
and FLOCK, which is the system presented here. RTPS also incorporates
CPU and GPU implementations of both systems. For the GPU
implementation OpenCL was chosen as the GPU programming language
to ensure portability between different graphics cards.

AbstractAbstract

Flocking is the interaction between the behaviors of entities. This
entities are called boids. Flocking can be simulated by the
implementation of the three steering behaviors introduced by Craig
Reynolds in his Boids model of flocks, herds and schools.

FlockingFlocking

SeparationSeparation
Maintains a minimum distance from each other.
This helps to prevent crowding and potential
collisions between boids.

AlignmentAlignment
Maintains all boids heading to the same
direction. Each boid steers towards the average
velocity of their local neighbors.

CohesionCohesion
Maintains all boids together as a flock. Each boid
steers towards the average position of their local
neighbors.

AlgorithmAlgorithm

foreach Boid i do

Compute FindFlockmates(i, search_radius)

if flockmates.size() > 0

Compute Separation(i, flockmates) → acc_separation

Compute Alignment(i, flockmates) → acc_alignment

Compute Cohesion(i, flockmates) → acc_cohesion

end

Set vel_separation = acc_separation * weight_separation

Set vel_alignment = acc_alignment * weight_alignment

Set vel_cohesion = acc_cohesion * weight_cohesion

Set acceleration = velocity[i] + vel_separation + vel_alignment + vel_cohesion

if acceleration.length() > maximum_speed

acceleration = normalize(acceleration) * maximum_speed

end

Set velocity[i] = v + acceleration Comment: v is an optional velocity field

Set position[i] += dt * velocity[i]

Compute CheckBoundaries(position[i])

end

vAlignment=[1
k
∑
j=1

k

v j]−v i

vCohesion=[1
k
∑
j=1

k

p j]− pi

vSeparation= 1
M

∑
j=1

k normalize (pi− p̂ j)
length(pi , p̂ j)

Real-Time Particle Systems LibraryReal-Time Particle Systems Library

FLOCK initialization
 Set the maximum number of boids
 Setup the FLOCK settings
 Setup the domain
 Setup the initial conditions for the FLOCK
 Set the renderer

FLOCK update
 The only step of updateCPU is to call the
integration method which computes the entire
algorithm.
 The steps of updateGPU are: 1) setup the
boids for the neighbor search, 2) neighbor
search, 3) compute the steering behaviors,
and 4) compute the final velocity, and update
the position.

Insert Boids to FLOCK
 Two initial configurations are currently
available: box and sphere.
 The dimensions are send to the domain
class which is going to fill the vector of the
positions.

FLOCK parameters
 Ou implementation has six parameters that
can be set by the user: maximum speed,
desired separation distance, neighbor search
radius, and the weights for the steering
behaviors.

RTPS Modifier for Blender Game EngineRTPS Modifier for Blender Game Engine

Blender source code modificationsBlender source code modifications
I. Create the connection between RTPS and Blender

● Development inside the Game Engine
● Import RTPS library
● Create and initialize the RTPS object

II. Develop the functionality of the RTPS Modifier
● Development inside Blender
● Create a struct with the RTPS settings
● Define and initialize each of the settings

III. Develop the UI for the Modifier
● Development in Python
● Add the settings to the respective systems

The Blender Game Engine was enhanced by adding a
new modifier that is able to create and simulate real-time
FLOCK and SPH particle systems.

ReferencesReferences

[1] Craig Reynolds, “Flock Herds and Schools: A Distributed Behavioral Model”, SIGGRAPH, 1987.
[2] Craig Reynolds, “Steering Behaviors for Autonomous Characters”, Game Developers Conference, 1999.

AcknowledgementsAcknowledgements
Thanks to Gordon Erlebacher for his advices, thanks to Ian Johnson, Evan Bollig, and Andrew Young for all their help, and thanks
to the Department of Scientific Computing.

ConclusionsConclusions
The Blender Game Engine was enhanced by adding a custom modifier. This custom
modifier calls the RTPS library which has all the implementation for the FLOCK and
SPH systems. This is a work in program, only simple 3D motion of the boids is
presented here. Ideally, the capability of our game engine Boid system should be similar
to that already available outside the Blender Game Engine, except for greatly enhanced
efficiency, since it runs on the GPU.

2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144 524,288
0

20

40

60

80

NVIDIA GeForce GTX 480

RTPS-GPU Boids-Blender

boids

fp
s

ResultsResults

The previously described system can be run in the Blender
Game Engine successfully.

The performance was measured and RTPS Boid system
running in a GTX 480 GPU is clearly more faster than the
Boid system already available in Blender.

Render Systems

SPH FLOCK

RTPSettingsRTPS Domain

rtpslib

	Slide 1

