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Heat conduction can be classically described by Fourier's law which is a diffusion equation.  
These types of equations can be thought of as describing average properties of a random walk of 
many particles.  When describing heat conduction, the considered 'particles' are electrons in metals 
and phonons in ionic crystals..  However, when the number of collisions of heat carriers becomes 
Low, a diffusion equation is no longer valid.

The Boltzmann transport equation ( BTE) can be used to model both the diffusion 
regime (when the number of heat carrier collisions is high) and the ballistic regime (when 
the number of collisions is low).  The BTE is an evolution equation of a 
distribution function which gives the number of particles in an elementary volume in phase space.  
The BTE describes the distribution function in space and time as influenced by advection, external 
forces, and 'particle' collisions.

We present a computational model for solving the BTE for phonons through Monte Carlo. 
 In the model we use the relaxation time approximation.  In this approximation the full BTE is 
simplified by assigning time-scales to each scattering mechanism associated with phonon 
interactions.  Currently, only phonon-phonon interactions are modeled. Including boundary and 
impurity scatterings, however, would be  a simple extension.  With this model we successfully 
reproduce the Ballistic regime of phonon transport in silicon.  In this case, the simulation correctly
predicts  a uniform temperature profile once steady-state is achieved.
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The difficulty of solving the full Boltzmann equation is the scattering term on the RHS.  To 
formulate the RHS exactly in the Monte Carlo would mean to not only track all phonon states but 
also to compare each state with all other states on every time step.  This is not possible even with modern
Computers. Instead we make the so called relaxation time approximation.  Here we assign a 
total relaxation time to each phonon to encapsulate all phonon scattering.  This can include phonon-
phonon scattering, phonon-boundary scattering, and phonon-defect scattering.
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To combine all scattering mechanisms into a single, total relaxation time for a given phonon, we
employ Mathiessen's Rule.  This assumes that each scattering mechanism behaves independently
of all others and yields  
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Lattice Vibrations and Phonon Modeling
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Initialization

– Create Sub-Volumes

Set local temperature for each cell

Time step is chosen such that the fastest
phonons are not allowed to traverse an
entire cell during a single step.

– Use energy equation to get phonon numbers
   for each cell.
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This number is usually too large to simulate 
computationally, and so we define a scaling factor:
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N' is the number of phonos that we will track in
the simulation.  Each simulated phonon is then
representative of W number of actual phonons. 

– Determine Polarization
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A random number then determines each
phonon's branch.

– Calculate velocities from a quadratic
   fit to experimental dispersion data.

– Sample directions randomly across
   a sphere and positions within each cell.

Stepping in Time

– Phonon Drift
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We treat the first and last cells as blackbodies.
Any phonons drifting into these cells are deleted
from the simulation.  The first and last cells are 
then initialized again to the hot and cold
temperatures. 

Currently we specularly reflect phonons from
all other boundaries to obtain results that can
be compared to bulk data.

Size effects can be simulated by implementing
diffuse reflections at the boundaries.   

– Calculate Cell Temperatures
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Invert energy equation to get a pseudo-
temperature for each cell.

These temperatures are then used to
calculate the three-phonon relaxation
times.

– Phonon Scattering

Calculate the total relaxation time for each
phonons prescribed by Holland (2).
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Below are the total relaxation times for each 
branch at 100K as function of phonon frequency.

Stepping in Time Cont.

If a phonon scatters, it's state is completely
reset as defined in the initialization process.
The only difference being that a new distribution
function must be used to resample frequencies.
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In the neighboring column we have plotted
the F distribution function at three different
temperatures.

The modified distribution function for 
resampling frequencies was prescribed by 
Lacroix et.al. (1) and ensures that Kirchhoff's 
law (creation balances destruction) is obeyed. 

– Store Relevant Data

– Step in time

Acknowledgment:  This research was supported by the US Department of Energy,
                                 Office of Basic Energy Sciences as part of an Energy Frontier 

  Research Center

Lacroix et. al. (1)

We are currently testing our model against results obtained by Lacroix et. al. (1).  Above we compare
results of a low temperature simulation for silicon.  Here the hot and cold cells are held at 11.88K and 3K
respectively, and we plot the temperature evolution along the z-axis with time.  At 10K there are essentially
no phonon scatterings and we achieve a pure ballistic simulation.  A steady-state temperature of 10K is reached
throughout the simulated geometry as seen by Lacroix.

As we move to higher temperatures, phonon-phonon scatterings become more frequent.  During a room
temperature simulation, roughly half the phonons will scatter within a 5 ps time interval.  Here, ensuring
that the system conserves energy during the scattering process is crucial in obtaining correct results.  With
the current code, our system tends to lose energy as phonon energies are redistributed according to the F_scat
function defined above.  We are currently investigating this issue.

After resolving the issue with energy conservation, we plan to model a pure UO2 crystal and eventually
model UO2 with varoius crystal defects.  Here optical phonons will need to be included since their group
velocities are much higher than those found in silicon. 
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