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Abstract

Monte Carlo Model

Heat conduction can be classically described by Fourier's law which 1s a diffusion equation. Initialization Stepplng in Time COnt.
These types of equations can be thought of as describing average properties of a random walk of . o
many particle.s. .When describing heat conduction, the considered '.p'flrticles' are elect.rons in metals — Create Sub-Volumes — Determine Polarization If a phonon scatters, it's state is completely In the neighboring column we have plotted
and p honpns 1 10mIC CWSt?IS" However, When the number of collisions of heat carriers becomes L/;}» o _ N () reset as defined in the 1nitialization process. the F distribution function at three different
Low, a diffusion equation is no longer valid. o [ —— Pulel=y Lal@)+Npy(w,) The only difference being that a new distribution temperatures.
.The Boltzmann transport equatlon.( BTE? can b.e uspd to model botb the d1ffusmn ‘ JE T — A rand et then deform X function must be used to resample frequencies.
regime (when the Iolu.mbe%‘ of heat carrier coulslons is hlogh) and the ballistic regime (when hran (?mbnumher cn delerminges cac The modified distribution function for
the quml?er of colohsmns.ls loyv). The BTE 1s an evo}utlog equation of a | Set local temperature for each cell phonon's branch. resampling frequencies was prescribed by
distribution fun.ctlon WhI.Ch gives the nun?ber. of particles in an ele?mentary volume in phase space. — Calculate velocities from a quadratic j ) j ) Lacroix et.al. (1) and ensures that Kirchhoff's
The BTE descrlpes the dOIS.'[I‘IbutIOIl function 1n space and time as influenced by advection, external Time step is chosen such that the fastest fit to experimental dispersion data. - N,(T) . ,Zzl N (T)XP,,, law (creation balances destruction) is obeyed.
forces, and 'particle’ collisions. h ¢ allowed fo { =¥ - scar\ L )=F
We present a computational model for solving the BTE for phonons through Monte Carlo. PUONONS att VL AHIOWEH 10 HAVELse all g3 Zzll N(T) ; N(T)XP o
In the model we use the relaxation time approximation. In this approximation the full BTE 1s entire cell during a single step. e [ pma : ] ]
.. C . : : : i3] ] — Store Relevant Data
.s1mphﬁ.ed by assigning time-scales to each scgttermg .mechamsm associated Wlth phonon — Use energy equation to get phonon numbers ;:)M | . N
}ntera(.:tlons. anently, only phonon-phonor} 1nteract10n§ are quelec}. Including boundary and for each cell. T A _ _ — _ _ Step in time
impurity scatterings, however, would be a simple extension. With this model we successfully A S ] — 30K |
reproduce the Ballistic regime of phonon transport in silicon. In this case, the simulation correctly Nev S % 1 Kﬁ,p p ?z |
predicts a uniform temperature profile once steady-state 1s achieved. — e - hw, | 27T2vgb,p g,aw A Sai—— f‘ﬁﬁi’n T Taae T _
k,T
This number 1s usually too large to simulate o
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Re I axati on Ti me Ap p rOXi m ati on computationally, and so we define a scaling factor:

_N f |
The full Boltzmann equation reads: N W SRR D ReSUItS and DiSCUSSion
of | ﬂ . frequeicy (rad/sec6E+l3) ’ .

velocity (m/sec)

af — — - 1 1 L T ' %
ot eV = ot m,_; [ (K" K)f(K")=d (K, K7) /(K] N' 1s the number of phonos that we will track in _ Samole directions randomlv 2¢ross
- the simulation. Each simulated phonon 1s then l? d positi . thy h cell
/7, K1) Distribution function ve=Vxw  Group velocity representative of W number of actual phonons. 4 SPREre and postions within each ¢efl
$(K', K) Scattering rate from state K <
to state K' . . . "
The difficulty of solving the full Boltzmann equation 1s the scattering term on the RHS. To Stepplng in Time . . . . .
formulate the RHS exactly in the Monte Carlo would mean to not only track all phonon states but ’ i Y om Lacamix ot al. 15)
also to compare each state with all other states on every time step. This is not possible even with modern — Phonon Drift — Phonon Scattering ]
Computers. Instead we make the so called relaxation time approximation. Here we assign a R ~ L A4
. . . . ) Vo=V 1tV o s
tcﬁal relaxatloq time 1t10 each phonon to encapsulate allhphonon stf:attermg. ThlS can include phonon new " 0 g Calculate the total relaxation time for each I |
phonon scattering, phonon-boundary scattering, and phonon-defect scattering. phonons prescribed by Holland (2). T T !
orl =1, We treat the ﬁrs.t apd l'ast cells as blackbodies. P =l—exp(—AtlT,,) z{misans)
i . f—fo=exp(—t/T) Any phonons drifting into these cells are deleted NU NU . . . .
scat from the simulation. The first and last cells are We are currently testing our model against results obtained by Lacroix et. al. (1). Above we compare

To combine all scattering mechanisms into a single, total relaxation time for a given phonon, we then initialized again to the hot and cold Tow=B,w’ T’ Longitudinal results F’f a low temperature simulation for SlllCQH Here the hot apd Cf’ld gells are held at 11.88K and 3.K

employ Mathiessen's Rule. This assumes that each scattering mechanism behaves independently temperatures. respectively, and we plot the temperature evolutl(?n .alo.ng the Z27axI1s with time. At 10K there are esseptlally

of all others and yields I T; =B yw T Transverse no phonon scatterings and we achieve a pure ballistic simulation. A steady-state temperature of 10K 1s reached

T =Ty TTy T TimpuriyT -+ Currently we specularly reflect phonons from f \ throughout the simulated geometry as seen by Lacroix.
0 w<w,, As we move to higher temperatures, phonon-phonon scatterings become more frequent. During a room

all other boundaries to obtain results that can _ : : . s L. :
be compared to bulk data T Ul = i w temperature simulation, roughly half the phonons will scatter within a 5 ps time interval. Here, ensuring

2, .
By /sinh k,T ) W>W,, that the system conserves energy during the scattering process is crucial in obtaining correct results. With
| the current code, our system tends to lose energy as phonon energies are redistributed according to the F_scat
function defined above. We are currently investigating this issue.

After resolving the issue with energy conservation, we plan to model a pure UO2 crystal and eventually

hw .
K, T -1 branch at 100K as function of phonon frequency. model UO2 with varoius crystal defects. Here optical phonons will need to be included since their group
— Calculate Cell Temperatures velocities are much higher than those found 1n silicon.

\
Si1ze effects can be simulated by implementing

Phonon Occupation # (n)= diffuse reflections at the boundaries. Below are the total relaxation times for each
(Bose-Einstein) exp

0.0001g—
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oal Vibrational Energy  £=%, 2| (n)+1 > [+ . =2 References
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Invert energy equation to get a pseudo-

tume scale (sec)

2 2 le-O8 E
Density of States D(w)=1E 4k _ VK temperature for each cell. :
2t dw 27y, le-09 2. M. Holland, Phys. Rev. 132, 2461 (1963)
These temperatures are then used to le-10 -
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