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1. Introduction

Peridynamics [2] is a recently developed non-local theory of continuum me-
chanics that is useful in simulating multi-scale phenomena. Its formulation
Is based upon an integral equation of motion so that discontinuities may
spontaneously form and propagate without special treatment, thus it is nat-
urally well-suited to modeling fracture, dislocations, and phase boundaries.

The governing equations of peridynamics permit a "mesh-free” solution
method [3] that has the same computational structure as a molecular dy-
namics simulation. Molecular dynamics [1] and other similar particle-based
simulations have been seen large speedups and linear scaling when im-
plemented on graphics processing units (GPUs), which excel at such data-
parallel computational tasks.

In this work, we review a particle-based solution method for the governing
equations of peridynamics, and detail our efforts to extend this method to
the GPU using NVIDIA’s CUDA parallel computing architecture.

Figure 1: Kinematic quantities that describe a peridynamic continuum body

in its reference (\),) and current (1) configurations.

2. Peridynamic Model

Peridynamic theory is a reformulation of continuum mechanics that em-
ploys a non-local force model to account for long-range material interac-
tions. It is governed by an integro-differential equation of motion that avoids
spatial derivatives. In this way, the same description of motion is valid over
the entire material body, regardless of the presence of defects.
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From here on, the relative position between particles in the reference con-
figuration is denoted by & and in the current configuration by & + n, where
n is the relative displacement. The pairwise internal force function f (n, §)
contains all of a material body’s constitutive information and the force term
b (x,t) accounts for all external forces acting upon the body.

Although a specific functional form for the internal force density f (n, &) de-
pends on the system begin modeled, it must exhibit certain properties to
satisfy momentum conservation principles. To conserve linear momentum,
it is required that particle force interactions are symmetric,

f(=n, =& =—-f(n§). (2)
Similarly, angular momentum is conserved when,
(m+&) x f(n,€ =0, (3)

that is, the force interaction between any two particles acts parallel to the
line that connects them in the current configuration.

In the general state-based theory of peridynamics, the non-local forces act-
Ing on a particle  are determined by the collective deformation of all the
material within its neighborhood Z,.. In this work, we focus solely on the
simplified bond-based theory, where it is assumed that the collection of
bonds associated with a particle do not interact with each other. Further-
more, we restrict our study to micro-elastic materials, in which the pairwise
force function is conservative, so f (n, &) can be written as the gradient of
a scalar micro-potential.
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The total energy density of a micro-elastic particle can be separated into
its internal and external components,

1
Potential: Epot (x, 1) = 5/ w (N, &) dVe, (5)
netic: B () = 20U (4 O
Kinetic: Exin (x,t) = ; (1% (x,1) 5 (x, 1), (6)
External: Fext (x,t) = —§b (x,1) - w(x,t). (7)

Above, the internal energy is comprised of the elastic potential energy and
Kinetic contributions, and the external energy accounts for all externally
applied forces.
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3. Prototype Micro-elastic Brittle (PMB) Material

Two particles in a PMB material are initially bonded if they are positioned
within some neighborhood ||&]|| < ¢ in the reference configuration. Bonded
particles exert a bond force on each other that is analogous to that of an
elastic spring.
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Figure 2: In a PMB material, bonded continuum particles attract and repel
in a spring-mass system until their bond is broken.

The stretch of a bond is defined as the relative difference of the particle’s
relative separation distance in the reference and current configuration,
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In a brittle damage model, bonds stretched beyond a certain critical stretch
value are broken irreversibly so that the involved particles no longer inter-
act. This effect is tracked through a history-dependent boolean function

p(t,€) = {1 Wo8) < slf) VE € 0,0

0 otherwise

. (11)

This allows us to define a scalar damage measure.
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4. Short-Range Forces

Short-range forces are introduced in the current configuration to prevent
the overlap of moving material. Thus, for each particle pair such that
In +€&|| < d°, we include an additional term in the expressions for the
micro-potential and internal forces.
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Figure 3: Short range forces are necessary to prevent the overlap of
nearby continuum particles in the current configuration.

5. Discretization

Various numerical integration techniques have been useful in approximat-
ing the peridynamic equation of motion, including Gaussian quadrature,
finite elements, and spectral methods. Our solution scheme uses the so-
called mesh-free “EMU” method [3] which discretizes spatial quantities us-
iIng the composite midpoint rule,
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and temporal quantities using an explicit central difference (Verlet) recur-

rence relation,
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In which a we choose a constant time step no larger than
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as suggested by von Neumann stability analysis [3]. In the above equa-
tions, superscripts indicate the time step number during which a quantity is
evaluated, and subscripts represent the node number. Using this method, a
volume is attributed to each continuum particle. The quantity V), represents
the portion of that particle volume that is contained within the neighborhood
of x for which the pairwise force function is non-zero.

Peridynamic Structures Simulated on the GPU /7

— w— W—

'

mmh%#

d|

=

6. Algorithm

Graphics Processing Units (GPUs) are powerful data-parallel computa-
tion engines already installed in many computer workstations. Recent ad-
vances in GPU hardware and software support their use in accelerating
general purpose computations. The “EMU” discretization of peridynamics
models lends itself naturally to such a computational architecture because
it is both FLOPS-intensive and data-parallel. Adapting computer programs
designed for CPUs to a GPU architecture is non-trivial and requires tra-
ditional algorithms and data structures to be rethought. Here we outline
our solution algorithm for solving the peridynamic equations of motion in
parallel, entirely on the GPU.

For each time-step:
. Update positions and half-step velocities of all particles
. Update computation of bond forces
. Reduce axis-aligned bounding box for particle cloud
. Determine cell index for each particle, interleave bits to obtain Z-value
. Sort positions based on location on Z-order curve

. Compute short range forces; neighbor query can be terminated early
due to structure of Z-order curve

. Finish velocity update of all particles
. When needed, reduce energy and scalar damage of each particle.

7. Space-Filling Curves

Space-filling curves are an essential ingredient to enabling parallelism and
scalability of this algorithm.
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Figure 4: Examples of space-filling curves in two dimensions (order=4,).

A space-filling curve is as a continuous function that maps points in n-
dimensional space to the unit interval [0, 1]. Certain properties of space-
filling curves (e.g. choice of endpoints, locality, & symmetry) lead to many
useful applications.

(a) order = 1 (b)order=2

Figure 5: Z-order curves of various orders in three-dimensions.

(c)order =3

In this code, we employ the z-order space filling curve because it has im-
proved spatial locality over the common raster order and is relatively simple
to implement by interleaving bits. This enables a sparse data structure for
storing the history of inter-particle bonds, and an efficient algorithm for ball
neighbor queries.

8. Summary and Future Work

e The theory described here has been implemented in a C++ code using
NVIDIA’'s CUDA parallel computing architecture and the Thrust library.

e The neighbor query incurred in introducing the short-range forces has
been reduced in complexity by using space-filling curves. Additional
work is planned to further prune these search ranges.

e The scaling of this code is currently limited by the storage requirements
for the bond histories. We are currently looking for a more efficient data
structure that can record the past states of bonds.

e After code testing is complete, we plan to apply our method to studying
the failure of composite structures.
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