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1. Introduction

Peridynamics [2] is a recently developed non-local theory of continuum me-
chanics that is useful in simulating multi-scale phenomena. Its formulation
is based upon an integral equation of motion so that discontinuities may
spontaneously form and propagate without special treatment, thus it is nat-
urally well-suited to modeling fracture, dislocations, and phase boundaries.

The governing equations of peridynamics permit a ”mesh-free” solution
method [3] that has the same computational structure as a molecular dy-
namics simulation. Molecular dynamics [1] and other similar particle-based
simulations have been seen large speedups and linear scaling when im-
plemented on graphics processing units (GPUs), which excel at such data-
parallel computational tasks.

In this work, we review a particle-based solution method for the governing
equations of peridynamics, and detail our efforts to extend this method to
the GPU using NVIDIA’s CUDA parallel computing architecture.

Figure 1: Kinematic quantities that describe a peridynamic continuum body
in its reference (Ω0) and current (Ω) configurations.

2. Peridynamic Model

Peridynamic theory is a reformulation of continuum mechanics that em-
ploys a non-local force model to account for long-range material interac-
tions. It is governed by an integro-differential equation of motion that avoids
spatial derivatives. In this way, the same description of motion is valid over
the entire material body, regardless of the presence of defects.

ρ
∂2u

∂t2
(x, t) =

∫
Hx

f (u′ − u,x′ − x) dVx′ + b (x, t) (1)

From here on, the relative position between particles in the reference con-
figuration is denoted by ξ and in the current configuration by ξ + η, where
η is the relative displacement. The pairwise internal force function f (η, ξ)
contains all of a material body’s constitutive information and the force term
b (x, t) accounts for all external forces acting upon the body.

Although a specific functional form for the internal force density f (η, ξ) de-
pends on the system begin modeled, it must exhibit certain properties to
satisfy momentum conservation principles. To conserve linear momentum,
it is required that particle force interactions are symmetric,

f (−η,−ξ) = −f (η, ξ) . (2)

Similarly, angular momentum is conserved when,

(η + ξ)× f (η, ξ) = 0, (3)

that is, the force interaction between any two particles acts parallel to the
line that connects them in the current configuration.

In the general state-based theory of peridynamics, the non-local forces act-
ing on a particle x are determined by the collective deformation of all the
material within its neighborhood Hx. In this work, we focus solely on the
simplified bond-based theory, where it is assumed that the collection of
bonds associated with a particle do not interact with each other. Further-
more, we restrict our study to micro-elastic materials, in which the pairwise
force function is conservative, so f (η, ξ) can be written as the gradient of
a scalar micro-potential.

f (η, ξ) =
∂w

∂η
(η, ξ) (4)

The total energy density of a micro-elastic particle can be separated into
its internal and external components,

Potential: Epot (x, t) =
1

2

∫
Hx

w (η, ξ) dVξ, (5)

Kinetic: Ekin (x, t) =
ρ

2

∂u

∂t
(x, t) · ∂u

∂t
(x, t) , (6)

External: Eext (x, t) = −1

2
b (x, t) · u (x, t) . (7)

Above, the internal energy is comprised of the elastic potential energy and
kinetic contributions, and the external energy accounts for all externally
applied forces.

3. Prototype Micro-elastic Brittle (PMB) Material

Two particles in a PMB material are initially bonded if they are positioned
within some neighborhood ‖ξ‖ ≤ δ in the reference configuration. Bonded
particles exert a bond force on each other that is analogous to that of an
elastic spring.

w =
1

2

c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖)2 (8)

f =
c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖) η + ξ

‖η + ξ‖
(9)

Figure 2: In a PMB material, bonded continuum particles attract and repel
in a spring-mass system until their bond is broken.

The stretch of a bond is defined as the relative difference of the particle’s
relative separation distance in the reference and current configuration,

s =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
. (10)

In a brittle damage model, bonds stretched beyond a certain critical stretch
value are broken irreversibly so that the involved particles no longer inter-
act. This effect is tracked through a history-dependent boolean function

µ (t, ξ) =

{
1 s(t′, ξ) < s0(t

′) ∀ t′ ∈ (0, t)

0 otherwise
. (11)

This allows us to define a scalar damage measure.

ϕ (x, t) = 1−
∫

Hx
µ (t, ξ) dVξ∫
Hx
dVξ

(12)

4. Short-Range Forces

Short-range forces are introduced in the current configuration to prevent
the overlap of moving material. Thus, for each particle pair such that
‖η + ξ‖ ≤ ds, we include an additional term in the expressions for the
micro-potential and internal forces.

ws =
1

2

cs

δ
(‖η + ξ‖ − ds)2 (13)

f s =
cs

δ
(‖η + ξ‖ − ds) η + ξ

‖η + ξ‖
(14)

Figure 3: Short range forces are necessary to prevent the overlap of
nearby continuum particles in the current configuration.

5. Discretization

Various numerical integration techniques have been useful in approximat-
ing the peridynamic equation of motion, including Gaussian quadrature,
finite elements, and spectral methods. Our solution scheme uses the so-
called mesh-free “EMU” method [3] which discretizes spatial quantities us-
ing the composite midpoint rule,

ρ
∂2uni
∂t2

=
∑
p

f
(
unp − uni ,xp − xi

)
Vp + bni , (15)

and temporal quantities using an explicit central difference (Verlet) recur-
rence relation,

∂2uni
∂t2

≈ u
n+1
i − 2uni + un−1i

(∆t)2
, (16)

in which a we choose a constant time step no larger than

∆t <

√√√√ 2ρ∑
p

∥∥∥∂f∂η (0, ξ)
∥∥∥Vp , (17)

as suggested by von Neumann stability analysis [3]. In the above equa-
tions, superscripts indicate the time step number during which a quantity is
evaluated, and subscripts represent the node number. Using this method, a
volume is attributed to each continuum particle. The quantity Vp represents
the portion of that particle volume that is contained within the neighborhood
of x for which the pairwise force function is non-zero.

6. Algorithm

Graphics Processing Units (GPUs) are powerful data-parallel computa-
tion engines already installed in many computer workstations. Recent ad-
vances in GPU hardware and software support their use in accelerating
general purpose computations. The “EMU” discretization of peridynamics
models lends itself naturally to such a computational architecture because
it is both FLOPS-intensive and data-parallel. Adapting computer programs
designed for CPUs to a GPU architecture is non-trivial and requires tra-
ditional algorithms and data structures to be rethought. Here we outline
our solution algorithm for solving the peridynamic equations of motion in
parallel, entirely on the GPU.

For each time-step:

1. Update positions and half-step velocities of all particles

2. Update computation of bond forces

3. Reduce axis-aligned bounding box for particle cloud

4. Determine cell index for each particle, interleave bits to obtain Z-value

5. Sort positions based on location on Z-order curve

6. Compute short range forces; neighbor query can be terminated early
due to structure of Z-order curve

7. Finish velocity update of all particles

8. When needed, reduce energy and scalar damage of each particle.

7. Space-Filling Curves

Space-filling curves are an essential ingredient to enabling parallelism and
scalability of this algorithm.

( a ) Raster ( b ) Z-order ( c ) Hilbert

Figure 4: Examples of space-filling curves in two dimensions (order=4).

A space-filling curve is as a continuous function that maps points in n-
dimensional space to the unit interval [0, 1]. Certain properties of space-
filling curves (e.g. choice of endpoints, locality, & symmetry) lead to many
useful applications.

( a ) order = 1 ( b ) order = 2 ( c ) order = 3

Figure 5: Z-order curves of various orders in three-dimensions.

In this code, we employ the z-order space filling curve because it has im-
proved spatial locality over the common raster order and is relatively simple
to implement by interleaving bits. This enables a sparse data structure for
storing the history of inter-particle bonds, and an efficient algorithm for ball
neighbor queries.

8. Summary and Future Work

• The theory described here has been implemented in a C++ code using
NVIDIA’s CUDA parallel computing architecture and the Thrust library.

• The neighbor query incurred in introducing the short-range forces has
been reduced in complexity by using space-filling curves. Additional
work is planned to further prune these search ranges.

• The scaling of this code is currently limited by the storage requirements
for the bond histories. We are currently looking for a more efficient data
structure that can record the past states of bonds.

• After code testing is complete, we plan to apply our method to studying
the failure of composite structures.
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