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Abstract

Compared to other types of satellite-derived data, assimilating lightning data into operational

numerical models has received relatively little attention. NASA will launch in 2015 the GOES-R

Lightning Mapper (GLM) that will provide continuous, full disc, high resolution total lightning

(IC + CG) data. Previous efforts of lightning assimilation mostly have employed nudging. How-

ever, we propose to develop a more sophisticated approach involving 3-D VAR and 4-D VAR

toward which both NCEP and NRL are moving. The early stages of our research will utilize

existing ground-based lightning data that can be assimilated prior to the launch of GLM; later

phases will utilize GLM proxy data that will mimic what GLM will detect.

A major difficulty associated with this exercise is the complexity of the observation operator

defining the model equivalent of the lightning. It is using Convective Available Potential Energy

(CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear.

Marecal and Mahfouf (2003) have shown that nonlinearities can prevent a direct assimilation of

rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier

et al. (1994)) from being successful. In our case we also proved that the direct assimilation of

lightning into the WRF 3D - VAR schemes is limited due to this incremental approach. Severe

threshold limits must be imposed on the innovation vectors in order to obtain an improved

analysis.

By adjusting the temperature lapse rate, we directly assimilate WTLN (Worldwide Total
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Lightning Network) total lightning data for the 2011 Tuscaloosa, AL tornado outbreak in a

domain of 406 × 305 km2 with a mesh resolution of 1 km in each horizontal direction and 60

vertical levels.

Next we developed a new scheme similar to the one outlined in Marecal and Mahfouf (2002,

2003) i.e., use 1-D VAR to adjust rainfall rate from the moist physics (mass-flux convection

scheme and large-scale condensation) closer to an observed value as in Mahfouf et al. (2005).

In our case, the 1D-VAR temperature columns retrievals are considered as new observations and

are assimilated in the 3D/4D-VAR systems . These approaches are denoted the ’1-DVAR +

3-DVAR’,’1-DVAR + 4-DVAR’ approaches (Mahfouf et al. 2005). It minimizes the problem that

nonlinearities of the moist convective scheme can introduce discontinuities in the cost function

between inner and outer loops of the incremental 3-D/4-D VAR minimization.

Next we present some results obtained with the 1-DVAR +3-DVAR approach. Again, we

applied the scheme for the 2011 Tuscalosa, Al tornado outbreak on a horizontal domain of 100×

100 km2 with a mesh resolution of 1 km and 60 vertical levels.

The 1-DVAR +4-DVAR approach requires tremendous computational resources at 1km reso-

lution. An assimilation window of 6 hours demands 1011 double precision variables to be stored

in the virtual memory, which will require 1000 Gbs. Even with I/O checkpoints the computer

needs to store 107 variables which make every 4-DVAR run impossible at 1km resolution. One

solution will be the split of the assimilation period in small windows with the length of one hour,

with the derived 4D-Var problems being solved as new data become available. The release of the

parallel version of WRFDA will allow us to test both approaches, the direct lightning assimilation

scheme and the 1-DVAR method, in 4-DVAR framework.

1 Introduction

Lightning data constitutes one of the relatively new sources of information considered in the framework

of data assimilation. The earliest effort of lightning data assimilation can be attributed to Alexander

et al (1999) using assimilating rain-rates derived from satellites and lightning on forecast of 1993

super storm.

Here we investigate effects of lightning on a severe super storm. Prior efforts aimed at assimilating

lightning data into numerical models, focused on Newtonian nudging in which vertical profiles of

humidity and/or latent heat were altered.

More efforts were carried out by Pessi and Businger (2009) and their group that developed a

lightning - convective rainfall rate based on long range lightning data and TRMM PR rainfall data

using the MM5 model. Mansell et al (2007) used NLDN and LMA lightning flashing data to control

the Kain - Fritsch convective parametrization scheme. Papadopoulos et al (2005) used real time C-G
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flash rate data from LRLDN network to nudge model generated humidity profiles as o function of

lightning intensity.

In as far as lightning data, use was make of NLDN (Orville 2008, Biagi et al 2007) and other long

range network Pacific Lightning detection, as limited area VHF network LMA (Rison et al, 1999,

Thomas et al 2004). We utilize total lightning data such as WWLLN (see Rodger et al (2008)).

There is considerable interest in discovering of nearly continuous lightning data, could be used to

improve convection forecast skill. Our interest will fall on assimilating total lightning data from the

Geostationary Lightning Mapper (GLM) and the Geostationary Operational Environmental Satellite

”R” (GOES -R) into a tropical cyclone model and a super storm situation characterized by the

Tuscaloosa super storm.

The GLM will map total lightning (CC + CG) for a uniform resolution varying between 8-12 km

supposed to achieve a detection efficiency of 70% or more.

As we mentioned before we proposed two assimilation technique using CAPE as a proxy between

lightning data and model variables in conjunction with the WRFDA-3DVAR system. First we briefly

introduce the WRFDA 3-DVAR framework. Next we describe the direct assimilation approach which

involves discussion about the observation operator, background error covariance matrix, observation

error covariance matrix,etc. Finally we provide information about the 1-DVAR+3-DVAR technique,

an approach which is more consistent with the incremental WRFDA 3D-VAR, allowing us to assim-

ilate most of the lightning observations without the necessity of imposing the observation filter used

in the direct assimilation approach.

2 WRFDA 3D-VAR System

As a reminder, the 3-DVAR method produces an ”optimal” estimate of the true atmospheric state

at the analysis time through the iterative solution of a prescribed cost function,

J(X0) =
1

2
(X0 −Xb

0)TB−1(X0 −Xb
0) +

1

2
(H(X0)− Y0)TR−1(H(X0)− Y0).

This solution represents the a posteriori maximum likelihood (minimum variance) estimate of the

true atmospheric state given two sources of a priori data: the background (previous forecast) Xb
0

and observations Y0. H is the observation operator that converts the initial state into observed

equivalents for comparison with the corresponding observations, R is the error covariance matrix of the

observations and matrix B contains the background error covariances for each atmospheric variable.

The control variable are: streamfunction, unbalanced velocity potential, unbalanced temperature,

relative humidity and unbalanced surface pressure.
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The WRFDA-3-DVAR adopts the incremental VAR formulation that is commonly used in oper-

ational systems. The incremental approach is designed to find the analysis increment that minimizes

a cost function defined as a function of the analysis increment by using a linearized observation

operator.

J(v) =
1

2
vTv +

1

2
(d−H′Uv)TR−1(d−H′Uv),

where d = Y0 −H(Xb
0) is the innovation vector, H′ is the linearization of the observation operator

H, B = UTU and X0 −Xb
0 = Uv.

3 Direct assimilation of lightning using WRFDA -3-DVAR

For WRFDA to assimilate lightning our choice depends on the horizontal resolution of the WRF

model. If we choose a mesh which is cloud resolving, we can calculate flash rates based on ice fluxes.

These are the approaches described by Barthe, C et al 2010. Thus we want to exploit the strong

linear correlation between the maximum vertical velocity and the total flash rate:

f = 5 · 10−6(0.677wmax − 17.286)4.55,

where f is the total flash rate and wmax the maximum vertical velocity.

So we link the maximum vertical velocity to the lightning flash rate and then translate it in

temperature lapse rate using CAPE (Convective available potential energy)

wmax =
√

2 · CAPE,

according with parcel theory, so we have to adjust for entrainment.

CAPE =

∫ zn

zg

g
Tparcel − Tenv

Tenv
dz,

with Tparcel the virtual temperature of the specific air parcel, Tenv the environment temperature, zf

and zn the heights of free convection and that of equilibrium (neutral buoyancy).

Thus, our operator has the following form

H(X) = 5 · 10−6(0.677
√

2 · CAPE(X)− 17.286)4.55.

The tangent linear and the adjoint models were obtained by using the TAPENADE Automatic

Differentiation Engine and were tested with the alpha test described in I.M. Navon et al 1992.
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The background error covariance matrix B describes the PDF of forecasts errors. For our experi-

ments we estimate B with the NMC method. We used 12h and 24h forecasts valid for the same time

for a one month long dataset generated by WRF model.

The observation error correlations were assumed to be zero so in consequence the observation

error covariance matrix is a diagonal matrix. The assimilation tests were performed using simply the

identity matrix for the matrix R.

Next we describe the performances of this scheme for the 2011 Tuscaloosa, AL tornado outbreak

on a domain of 406 × 305 km2 with a mesh resolution of 1 km and 60 vertical levels. When we assim-

ilated all the available lightning observations the conjugate gradient minimization algorithm failed to

find a global minimum due to the moist convective scheme which introduced discontinuities in the

cost function between inner and outer loops of the incremental 3-DVAR minimization caused by the

lightning nonlinear operator. By taking into account only the observations which have corresponding

innovation vectors smaller then a prescribed threshold we imposed an upper limit for the tempera-

ture perturbations introduced in the moist convective scheme thus allowing the WRFDA 3-DVAR

minimization algorithm to work properly.

When comparing the 6h forecast started with an analysis obtained with a 5.5 threshold by assim-

ilating both the available conventional observations and the lightning observations with a 6h forecast

initialized with a WRFDA 3-DVAR analysis improved only with the conventional observations we

get the maximum benefit in term of the temperature root mean square error calculated for the entire

domain using the NCEP FNL Operational global analysis as truth. We reduced the temperature root

mean square error by 3.1%.

4 1-DVAR+3-DVAR lightning assimilation scheme

To avoid the nonlinearities effects introduced by our lightning operator and to extract the benefit

from all the available flash observations we propose a 1-DVAR+3-DVAR technique similar with the

one outlined in Marecal and Mahfouf (2002, 2003) to assimilate surface rain - rate retrievals from the

SSM/I and TRMM microwave imager. First, the raw measurements are used in 1-DVAR procedure

to produce column temperature retrievals. These pseudo -observations are then assimilated into the

WRFDA 3-DVAR system.

The 1-DVAR method searches for an optimal estimate of the temperature profile at the analysis
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Figure 1: The lightning profile for the 2011 Tuscaloosa, AL tornado outbreak

Figure 2: The flash distributions before (left) and after (right) the direct 3D-Var assimilation

time through the iterative solution of the following prescribed cost function,

J(X0) =
1

2
(X0 −Xb

0)TB−1(X0 −Xb
0) +

1

2

(
H(X)− y0

σ0

)2

,

where H is the lightning observation operator introduced in the previous section and σ0 is the ob-

servation variance. Using the NMC method we construct the background error vertical covariances

matrix B for temperature profiles. The minimization is carried out not in the observation space

rather in the space determined by the B eigenvectors. This approach is used for preconditioning the

analysis equation. For the unconstrained minimization of the cost we used the conjugate gradient

algorithm CONMIN proposed by Shanno and Phua (1980).

Our 1-DVAR + 3DVAR approach was tested again for the 2011 Tuscalosa, AL tornado outbreak
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on a horizontal domain of 100× 100 km2 with a mesh resolution of 1 km and 60 vertical levels. The

impact of 1-DVAR is depicted in the next figure where we present a comparison between the simulated

observations calculated before (first guess) and after the assimilation (analysis). The assimilation time

was 18 : 00 and we choose σ0 = 1 for all the observations.
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The vertical temperature profiles obtained after the 1-DVAR minimization were prepared as

AIREP observations and assimilated in WRFDA 3D-Var system. We performed 6 assimilation exer-

cises at 18 : 00, 20 : 00, 21 : 00, 22 : 00, 23 : 00 and 00 : 00. The results are shown in the next figures.

Figure 3 shows the average change in the temperature profile after assimilation performed at 18 : 00.

We may notice an increase in temperature magnitude close to surface which is highly correlated with

an increase of CAPE in order to support more flash lightnings.
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Figure 3: The average change in the temperature profile - 18 : 00
.

Figure 4: The innovation vectors distributions and change in CAPE after the assimilation - 18 : 00

Figure 5: The innovation vectors distributions and change in CAPE after the assimilation - 20 : 00
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Figure 6: The innovation vectors distributions and change in CAPE after the assimilation - 21 : 00

Figure 7: The innovation vectors distributions and change in CAPE after the assimilation - 22 : 00

Figure 8: The innovation vectors distributions and change in CAPE after the assimilation - 23 : 00
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Figure 9: The innovation vectors distributions and change in CAPE after the assimilation - 00 : 00

The 6h forecast generated at 18 : 00 with an analysis improved by the lightning observations

assimilation has temperature profiles closer to the temperature columns of the truth (NCEP FNL

Operational global analysis at 00:00) than the 6h forecast initialized with the NCEP FNL analysis

at 18 : 00. The impact was measured using the temperature root mean square error. Due to flash

lightning assimilation we decreased the error by 16.1%.

5 Conclusions

NASA will launch in 2015 the GOES-R Lightning Mapper (GLM) that will provide continuous,

full disc, high resolution total lightning (IC + CG) data. Previous efforts of lightning assimilation

employed nudging scheme.

We proposed 2 new data assimilation methods using CAPE as a proxy between lightning data

and model variables in conjunction with the WRFDA 3-DVAR system. By adjusting the temperature

profiles we assimilate WTLN total lightning data for the 2011 Tuscaloosa, AL super storm for different

model domains.

The 1-DVAR + 3-DVAR scheme performed better than the direct assimilation scheme in terms of

both the number of assimilated observations and the accuracy of the 6h forecast temperature profiles.

The release of the parallel version of WRFDA will allow us to test both approaches, the direct

lightning assimilation scheme and the 1-DVAR method, in a full 4-DVAR framework.
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