Bayesian Neural Neworks in Data-Intensive High Energy ST

Physics Applications o

y

Ui

Michelle E. Perry, Dr. Anke Meyer-Baese, Dr. Harrison Prosper*
Florida State University, Department of Scientific Computing, *Department of Physics

Bayesian Neural Networks (BNNs) are applied to data-intensive High The CERN Large Hadron Collider (LHC) is the most powerful scientific
Energy Physics (HEP) applications for classification and regression. Neural instrument to date. It was built for two main purposes: to study the origins
networks are non-linear functions that can be used to model (in principle) of mass by searching for the Higgs boson and to search for physics outside
any mapping of N continuous real variables to M real variables. Where the Standard Model. One unconfirmed prediction of the SM is that the
traditional neural networks use optimization techniques to find an optimum mass of fundamental particles arise through interaction with an energy field,
set of neural network parameters, wg, BNNs assign a probability density to the Higgs field. The existence of the Higgs field would require a mediating
every set of network parameters, wy, in the parameter space. However, particle, the Higgs boson. The FSU group in collaboration with the

BNNs are significantly more computationally intensive to construct than Politecnico di Bari, Italy are searching for the Higgs boson via the

neural networks. The goal of this work is to develop efficient pp — H—ZZ* —- 414+ Xand pp — H — WW — 2| 4+ X decay
implementations of the training of BNNs on Graphical Processing Units channels. After event selection, an estimated 11.2 events in the ZZ*
(GPUs). channel and 38.7 events in the 2l channel, assuming the Higgs has a mass
Our preliminary studies with a GPU indicate that speed improvements of at of 130 GeV. This signal to background ratio in the ZZ* mode is 1 : 5,
least 80 are already possible with relatively modest optimization. We are whereas in the WW mode the ratio is 1 : 20.

therefore confident that the outcome of the proposed work could be
extremely far-reaching once it becomes possible to fit complicated
multivariate functions in minutes rather than in hours or days.

Bayesian Neural Networks

A neural network with at least one hidden layer of nodes is proven to be a
“universal approximator,” meaning that it can reproduce any smooth
mapping from R" to R™. In this work we focus on mapping from many
inputs to m = 1 Such a network can be represented in equation form as:

H N
f(X, w) = a+ Z bj tanh(cj —+ Z dji Xi) (1) /))100) g
=1 i=1

14
Q 60 12

8

20 + ° pted

where X is the set of training data, w are the neural network parameters, H
is the number of hidden nodes in the network, and N is the number of input
variables. This network employs one hidden layer, and tanh is the chosen

“activation function” for the neurons. The figure shows an example of the BNN modeling of the classification

probability P(top|mass, btag), where the mass is that of muon-pairs
created at the LHC and the variable btag characterizes the number of
so-called b-quarks created. This function discriminates between reactions at
the LHC containing top quarks that decay to muon-pairs from reactions
that contain Z bosons also decaying to muon-pairs. The function,
P(top|mass, btag), is modeled by a BNN with two input variables (mass
and btag), 15 hidden nodes, 10,000 training events, and a sampling of
about a million network parameter points. This required about 4 hours on a

Figure: Classification probability P(top|mass, btag).

n(X,w)

Figure: Graphical representation of a neural network with a single hidden layer. fast laptop. However, realistic applications may need ~ 10° training events
and may use ~ 15 input variables. Since training time is proportional to
the number of training events, this motivates the development of
computational methods to reduce the training time significantly. We

n(X,w) = 1/[1 + exp(—f(X, w)], (2) PHRATE . . ° 5 J

propose using GPUs to achieve this goal.

For classification,

yielding n(X, w) € (0, 1).

The training of neural networks and Bayesian neural networks differ because
of the differing perspectives with which the network parameters are viewed.
Most training algorithms for neural networks view their parameters as
parameters to be fitted to the training data using, for example, gradient
descent to a single “best” fit point in the network parameter space. By
contrast, in the Bayesian approach, one assigns a probability density to
every point in the parameter space of the neural network so that one can
assign meaning to the statement that one point in the neural network
parameter space is more probable, given the training data, than another.
Given the likelihood of the training data, which we denote by p(X]|w),
where w denotes a point in the neural network parameter space, we invoke
Bayes theorem

Our goal is to reduce the time required to train multivariate BNNs by at
least two orders of magnitude, through careful optimization of the most
time-consuming part of the training algorithm, namely, the calculation of
the large sum of highly non-linear functions (Eq. 4). Graphical Processing
Units (GPUs) are ideal for this application because the calculations of each
event of training data, T, are independent. We ideally want to train on
orders of 10° — 10° events, so the GPU is preferable to parallel CPU
implementations due to the many-core nature of the GPUs. A parallel
reduction algorithm is then used on the results from each event to give us

P(X|w). Current work utilizes NVIDIA's CUDA C extension on a single

X) = p(X X 3
p(w\) p(w) p(w)/p(X), o (3) GPU, with hopes of expanding to multiple GPUs on the new FSU SPEAR

to compute the probability density p(w|X) where In p(X|w) is given by: GPU cluster

T

Sl) (0l o0l 8

n=1
T is the number of examples in the training data, wy, is a weight associated S ABDELHAK DJOUADI
with each example, and t, = 1, 0 are the targets for classification into two Higgs Phenomenology: A Short Review
classes. The training of a Bayesian neural network entails sampling points Acta Physica Polonica A arXiv:hep-ph/9612361v1. December, 20009.

wy from p(w|X). We do so using Markov Chain Monte Carlo. For the
applications we have in mind, T ~ 10° — 10°, which renders these
calculations a formidable challenge.

s JOUKO LAMPINEN AND AKI VEHTARI

Bayesian Approach for neural networks—review and case studies
Neural Networks 14. 2001.

http://www.sc.fsu.edu/ "mperry meperry@fsu.edu

