

Supervised Aggregation Using **Artificial Prediction Markets**

Nathan Lay

Advisor: Adrian Barbu, Department of Statistics Co-Advisor: Anke Meyer-Baese, Department of Scientific Computing

Prediction Markets

>Forum where contracts are traded on future outcomes. >Contracts pay contingent on the outcome.

>Trading price of contracts reflects combined knowledge and experience of participants.

>Trading price is an estimator of the probability.

>Can predict outcomes of elections, sporting events, and

foreign affairs. >Were demonstrated to be more accurate than polling or individual experts.

Trading prices of contracts on democratic nominees for the 2008 presidential election

Overview

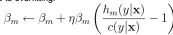
>Events are instances, and the outcomes are real numbers >Like classification, but with uncountably many labels

>Participants are conditional densities h(y|x)≻When

Equilibrium

>Equilibrium price conserves the budget sum for each update >Update defined in terms of an integral. >Estimates the true conditional density p(y|x)

$$c(y|\mathbf{x};\boldsymbol{\beta}) = \sum_{m=1}^{M} \beta_m h_m(y|\mathbf{x})$$

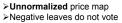

Update Rule

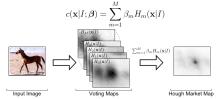
>Sequential update for each instance \mathbf{x} and label y Introduce reward kernel K(t; y) to distribute winnings around y

$$\beta_m \leftarrow \beta_m + \eta \beta_m \left(\int_Y K(t; y) \frac{h_m(t|\mathbf{x})}{c(t|\mathbf{x}; \boldsymbol{\beta})} dt - \int_Y K(t; y) \frac{h_m(t|\mathbf{x})}{c(t|\mathbf{x}; \boldsymbol{\beta})} dt \right)$$

Delta Update

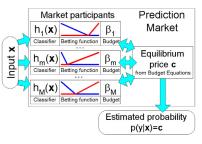
> When $K(t; y) = \delta(t - y)$ > Analogous update as constant classification market. > Prone to overfitting.


Hough Forest


>Predict the location of the center of an object. >Predict based on parts.

>Hybrid of a regression and classification forest >aggregate Hough Forest branches with the Regression Market to improve detection.

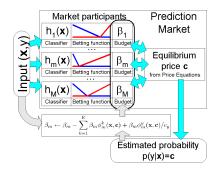
Detection Equilibrium


Overview

Idea

Reinterpret events as instances, future outcomes as instance labels, and participants as classifiers, regressors or densities.

For each instance, classifiers "purchase" contracts for each possible label.


>The trading price is a probability estimate for the instance.

Learning

>Each participant is allotted a budget. >Each participant bids for contracts and are rewarded based on correct prediction. >Budgets describe the prediction accuracy of each participant.

>The goal is to learn the budget configuration that improves the market's prediction accuracy.

Regression

Gaussian Update

 $K(t;y) = \frac{\mathbf{1}}{\sqrt{2\pi}\sigma}$

Can be estimated with Hermite-Gauss quadrature.

 $\beta_m \leftarrow$

≻T

$$-\beta_m + \eta \beta_m \left(-1 + \frac{1}{\sqrt{\pi}} \sum_{i=1}^n \omega_i \frac{h_m(y + \sqrt{2}\sigma t_i | \mathbf{x})}{c(y + \sqrt{2}\sigma t_i | \mathbf{x})} \right)$$

Loss Function
The update rule maximizes the average log likelihood
$$\ell(\boldsymbol{\beta}) = -\frac{1}{N} \sum_{n=1}^{N} \log(c(y_n | \mathbf{x}_n; \boldsymbol{\beta}))$$

Hough Market Training

Equilibrium

Normalized price map >Negative leaves vote as a uniform mass

$$c(\mathbf{x}|I; \boldsymbol{\beta}) = \frac{1}{Z} \sum_{m=1}^{M} \beta_m H_m(\mathbf{x}|I)$$

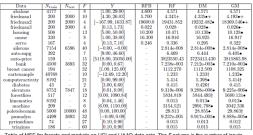
Update Rule

>For positives, reward kernel is Gaussian centered about the ground truth center

 $K(\mathbf{x};\mathbf{x}^*) = e^{-\frac{1}{2\sigma^2}\|\mathbf{x}-\mathbf{x}^*\|^2}$ >For negatives, reward kernel taken to be

uniform Update integral estimated as a Riemann sum

$$\beta_m \leftarrow \beta_m + \eta \beta_m \sum_{\mathbf{x}} \left[K(\mathbf{x}; \mathbf{x}^*) \frac{H_m(\mathbf{x}|I)}{c(\mathbf{x}|I; \beta)} - \frac{H_m(\mathbf{x}|I)}{Z} \right]$$

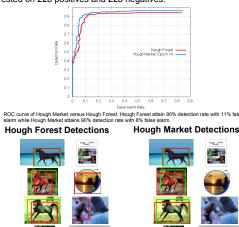

Step size depends on whether an image is positive or negative

> $0.05\eta_{\text{max}}$ positive $0.5\eta_{max}$ negative

Results

>Real data sets are from UCI and LIAAD repository. There are 23 total

>Participants are regression tree branches from a regression forest



on UCI and LIAAD data set , RFB is Breiman's reported e ind GM is the Market with Gai Bull while +/- represent significantly better/w

Results

>Trained on 100 positives and 50 negatives from the Weizmann Horse data set.

>Tested on 228 positives and 228 negatives.

DEPARTMENT Scientific COMPUTING