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1. Introduction

Peridynamics [2] is a recently developed non-local theory of continuum me-
chanics that is useful in simulating multi-scale phenomena. Its formulation
is based upon an integral equation of motion so that discontinuities may
spontaneously form and propagate without special treatment, thus it is nat-
urally well-suited to modeling fracture, dislocations, and phase boundaries.

The governing equations of peridynamics permit a ”mesh-free” solution
method [3] that has the same computational structure as a molecular dy-
namics simulation. Molecular dynamics [1] and other similar particle-based
simulations have been seen large speedups and linear scaling when im-
plemented on graphics processing units (GPUs), which excel at such data-
parallel computational tasks.

In this work, we review a particle-based solution method for the governing
equations of peridynamics, and detail our efforts to extend this method to
the GPU using NVIDIA’s CUDA parallel computing architecture.
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Figure 1: Kinematic quantities that describe a peridynamic continuum body
in its reference (Ω0) and current (Ω) configurations.

2. Peridynamics

Peridynamic theory is a reformulation of continuum mechanics that em-
ploys a non-local force model to account for long-range material interac-
tions. It is governed by an integro-differential equation of motion that avoids
spatial derivatives.
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f (u′ − u,x′ − x) dVx′ + b (x, t) (1)

From here on, the relative position between particles in the reference con-
figuration is denoted by ξ and in the current configuration by ξ + η, where
η is the relative displacement. The pairwise internal force function f (η, ξ)
contains all of a material body’s constitutive information and the force term
b (x, t) accounts for all external forces acting upon the body.

Various numerical integration techniques have been useful in approximat-
ing the peridynamic equation of motion, including Gaussian quadrature,
finite elements, and spectral methods. Our solution scheme uses the so-
called mesh-free “EMU” method [3] which discretizes spatial quantities us-
ing the composite midpoint rule,
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and temporal quantities using a central difference (Verlet) method,
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In the above equations, superscripts indicate the time step number during
which a quantity is evaluated, and subscripts represent the node number.

In this work, we focus solely on the bond-based peridynamic theory, where
it is assumed that the collection of bonds associated with a particle do not
interact with each other. Furthermore, we restrict our study to micro-elastic
materials, in which the pairwise force function is conservative, so f (η, ξ)
can be written as the gradient of a scalar micro-potential.

f (η, ξ) =
∂w

∂η
(η, ξ) (4)

We continue by defining a particular choice for the micropotential that is
appropriate for a brittle elastic material.

3. Prototype Micro-elastic Brittle (PMB) Material

Two particles in a PMB material are initially bonded if they are positioned
within some neighborhood ‖ξ‖ ≤ δ. Bonded particles exert a force on each
other that is analogous to that of an elastic spring.
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f = csµ
η + ξ

‖η + ξ‖
(6)

The stretch of a bond is defined as the relative difference of the particle’s
relative separation distance in the reference and current configuration,

s =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
. (7)

In a brittle damage model, bonds stretched beyond a certain critical exten-
sion are broken irreversibly so that the involved particles no longer interact.

µ (t, ξ) =

{
1 s(t′, ξ) < s0(t

′) ∀ t′ ∈ (0, t)

0 otherwise
. (8)

Figure 2: In a PMB material, bonded continuum particles attract and repel
in a spring-mass system until their bond is broken.

A short-range force is introduced in the current configuration to prevent
the overlap of moving material. Thus, for each particle pair such that
‖η + ξ‖ ≤ ds, we include an additional repulsive force.
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Figure 3: Repulsive short range forces are necessary to prevent the over-
lap of nearby continuum particles in the current configuration.

4. Graphics Processing Units

Graphics Processing Units (GPUs) are powerful parallel number crunching
engines readily available in many computer workstations. Relative to their
CPU counterparts, such GPUs dedicate more transistors to arithmetic cir-
cuitry while minimizing control and caching units, thus are specialized for
processing compute-intensive, highly parallel algorithms.
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Figure 4: Depiction of various memory spaces on a CUDA Device.
Adapted from the NVIDIA CUDA C Best Practices Guide.

Adapting computer programs designed for CPUs to a GPU architecture
can be non-trivial and often requires traditional algorithms and data struc-
tures to be rethought to achieve good performance. Attaining maximum
speedups for an application revolves around three basic strategies: maxi-
mizing parallel execution, optimizing memory usage to achieve maximum
memory bandwidth, and optimizing instruction usage to achieve maximum
instruction throughput.

5. Algorithm

For each time-step:

1. Update positions and half-step velocities of all particles

2. Sort current positions based on location along space-filling curve

3. Update computation of bond forces

4. Compute short range forces; neighbor query can be terminated early
due to structure of space-filling curve

5. Finish velocity update of all particles

6. When needed, reduce energy and scalar damage of each particle.

6. Space-Filling Curves

A space-filling curve is as a continuous function that maps points in n-
dimensional space to the unit interval [0, 1]. Their self-similar structure
leads to many useful applications. Space-filling curves are an essen-
tial ingredient to enabling parallelism and scalability of our algorithm.
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Figure 5: Examples of space-filling curves in two dimensions (order=4)

In our scheme, we work with the Lebesgue (also known as a Morton order
or Z-order) curve for its good spatial locality and simple implementation.
We encode a Morton order key by interleaving the bits of a position vector.

Z =

n−1∑
d=0

w−1∑
k=0

b
(d)
k 2nk+d (11)

This formula groups bits of equal significance into n-tuples within the key
without altering their order. This observation allows us to compare the rel-
ative position of any two points on the curve without the expense of explicit
bit interleaving.

i← 1

for j ← 2 to n do

if blog2 (lhsi ⊕ rhsi)c < blog2 (lhsj ⊕ rhsj)c
i← j

end

return (lhsi < rhsi)

Shortcuts are available for evaluating the log2 comparison of both integer
and floating point valued coordinates. This enables a sparse data structure
for storing the history of inter-particle bonds, and an efficient algorithm for
ball neighbor queries.

7. Summary and Future Work

• The theory described here has been implemented in a C++ code using
NVIDIA’s CUDA parallel computing architecture and the Thrust library.

• Spatial orderings are used to increase memory throughput when query-
ing the neighbor lists that record bond histories.

• The neighbor query required in computing the short-range forces has
been reduced in complexity using space-filling curves.

•We demonstrated this method’s use in impact simulations (see below).

•We are working to extend this code to study composite structures.
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Figure 6: We implemented the above solution scheme on the GPU and simulated the high speed impact of a spherical projectile into a cylindrical target.

FSU Department of Scientific Computing Computational Expo 2012, 11 April 2012


