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Galerkin methods are a common class of  methods used to 

approximate ordinary and partial differential equations 

(ODE/PDE).  Galerkin methods rely on the selection of  a set 

of  basis functions that are used to represent the solution of  

the differential equation.  Typical basis functions include: 

piecewise linear and quadratic polynomials and sine/cosine 

functions for spectral methods 

 

From areas of  image compression to  speech recognition 

wavelets have had a profound impact on representing large 

and small scale datasets in the computational science realm.  

Wavelets also have a number of  features that make them 

attractive functions to work with including: multi-resolution, 

compact support, differentiability and orthogonality. 

 

Reduced Order Modeling (ROM) is a widely used method to 

reduce the computational cost solving differential equations 

when using standard techniques like the Finite Element 

Method (FEM).  This research will demonstrate the viability 

of  using ROM with the Wavelet Galerkin approach to solving 

ODE’s. 

Figs. 1-3. Examples of 

Daubechies scaling and wavelet 

functions for D4, D6 and D20 

(Starting top left moving 

clockwise)  

The first thing to be done in this process is the selection of  

our wavelet basis functions.  There are many choices available 

including: Legendre Daubechies orthogonal and biorthogonal 

wavelelets.  But to keep things simple for now we will choose 

the Daubechies family of  orthogonal wavelets.  Daubechies 

wavelets are constructed to maximize the number of  vanishing 

moments which is correlated to polynomial order the wavelet 

can approximate.  One advantage of  Daubechies scaling 

functions, which are functions that define a given wavelet, is 

that they are compactly supported over a given domain.  

Typically Daubechies wavelets are referred to in terms of  their 

support DN; so the wavelet with support over [0,3] is called 

D4, [0,5] is called D6 etc. 

 

Unfortunately a problem with wavelets, that doesn’t exist in 

many of  the other standard basis functions, is we do not have 

an explicit formula to calculate the function values.  In order to 

construct the basis function though we can use what is called 

the dilation equation: 

𝜙 𝑥 =  𝑎𝑘 𝜙(2
𝑚𝑥 − 𝑘)𝑘                   [1] 

where 𝑎𝑘 are coefficient values determined by the type of  

wavelet.  One can use a recursive method, or what's known as 

the Cascade algorithm, to approximate the function values on a 

given domain. 

Now that our basis function has been chosen we can begin to 

formulate our ODE.  Using homogeneous Dirichlet boundary 

conditions on 𝑥 ∈ [0,1] we seek a discrete 𝑢ℎ satisfying our 

boundary conditions with the differential equation: 

−𝛽𝑢𝑥𝑥 + 𝛾𝑢𝑥 + 𝛼𝑢 = 𝑓 𝑥                   [2] 

where 𝑢 is the solution to our differential equation and 𝛽, 𝛾 

and 𝛼 are constants.  But first lets take a look at the weak 

form: 

−𝛽  𝑢𝑥𝑥𝑣 𝑑𝑥 +  𝛾  𝑢𝑥𝑣 𝑑𝑥                                        

   + 𝛼  𝑢𝑣 𝑑𝑥 =   𝑓 𝑥 𝑣 𝑑𝑥    [3] 

We will seek 𝑢ℎ ∈  𝑉𝑚 where 𝑉𝑚 is defined as the space 

spanned by all levels(𝑚) and translates(𝑘) of  our scaling 

function 𝜙(2𝑚𝑥).  Since 𝑢ℎ ∈ 𝑉𝑚 and 𝜙(2𝑚𝑥 − 𝑘) form a 

basis, we can write: 

𝑢ℎ =  𝐶𝑚,𝑘𝜙 2𝑚𝑥 − 𝑘                    [4] 

where 𝐶𝑚,𝑘 will be the unknowns in our weak problem. 

 

Using this definition of  𝑢ℎ we can re-write our weak problem.  

The first term in the problem would look like: 

 𝐶𝑚,𝑘 −𝛽  𝜙′′(2𝑚𝑥 − 𝑙)𝜙(2𝑚𝑥 − 𝑘) 𝑑𝑥       [5] 

where 𝑚 determines the spacing between our basis functions, 

and 𝑙 and 𝑘 are the scaling function translates. 

Fig. 10.  

ROM solution approximation 

using D10 with the level at 

𝑚 = 7 

In order to calculate the inner products of  this problem we 

must use a method proposed by Latto et. al. to find what are 

called connection coefficients.  These connection coefficients 

represent the inner products between two scaling functions at 

a given derivative, 𝑑 .  Since the scaling functions are 

orthogonal, we only need the connection coefficients for the 

terms with derivatives in them because the non-derivative 

terms are only non-zero when 𝑘 = 𝑙. 
 

Once the connection coefficients have been calculated, all that 

needs to be done is to resolve the boundary conditions and 

then set up a system of  equations to solve the problem for our 

𝐶𝑚,𝑘 ’s.  There are two typical approaches to resolve the 

boundary conditions: 

• Add N-1 “phantom” basis functions that extend past the 

ends of  the domain to compute the inner products of  our 

basis functions near the boundaries.  

• Modify the connection coefficients near the boundaries. 

 

We will choose to extend our basis functions past the ends of  

our domain.  Doing so leaves us with a sparse banded system 

of  equations comprised of  a combination of  our connection 

coefficients for their respective terms. 

 

Now, to ensure that our Wavelet-Galerkin method is working 

we will formulate a test problem with a known solution that 

satisfies our homogeneous Dirichlet boundary condition 

requirement so that we can compute the error and determine 

the rates of  convergence as we increase our discretization.  

The exact solution we will use is: 

𝑢𝑒𝑥𝑎𝑐𝑡 = 𝑥(𝑥 − 1)2 with 𝑥 ∈ [0,1]                [6] 

So if  we define our constants as 𝛽 = 𝛾 = 𝛼 = 1 our right 

hand side becomes 𝑓 𝑥 =  𝑥3 + 𝑥2 − 9𝑥 + 5; and we have 

everything we need to solve the ODE. 

Figure 4. Scaling basis 

function D6, and the 

translates where the 

derivative inner products 

are non-zero  

Figs. 5-7. ODE solved with 

resolutions: 
1

4
, 
1

8
 and 

1

16
 (Starting 

top left moving clockwise)  

Now that we have a method of  computing solutions to ODE’s 

using the Wavelet-Galerkin method we can begin to format 

our reduced order model.  One way to accomplish this is 

what’s known as the Proper Orthogonal Decomposition 

(POD).  POD uses the Singular Value Decomposition (SVD) 

to compute an orthogonal set of  basis vectors that can be used 

to construct a solution with only a few degrees of  freedom.  In 

SVD the first matrix 𝑈, where 𝐴 = 𝑈Σ𝑉𝑇 , represents the 

column space of  our matrix 𝐴. 

 

The first step of  creating our reduced order model is a pre-

processing step that involves solving the ODE a number of  

times for a range of  parameter values.  For our problem we 

will solve the test problem that was used in the last section 

while varying 𝛽, 𝛾 and 𝛼 between 1 and 2 in 1 4  increments.  

This means that we will have 125 solutions to fill our space. 

 

Then we can make what’s called a snapshot matrix by 

compiling the solution column vectors; we will use this as our 

𝐴 matrix in the SVD to find 𝑈 (our reduced basis vectors). 

From the plots in figures 5-7 we see that the Wavelet-Galerkin 

method appears to approach the actual solution as we hoped.  

Using the exact solution and the computed solutions at a 

number of  discretization's we can calculate the rates of  

convergence as the resolution is increased.  Remember that ℎ 

is calculated with respect to 2𝑚 so as we increase 𝑚, the 

resolution is also increased 

h Euclidean distance Error Rate 

0.25 0.018618 

0.125 0.0117 0.696796 

0.0625 0.003785 1.504585 

0.03125 0.000954 1.722775 

0.015625 0.000198 1.886827 

0.007813 2.85E-05 2.261854 

From the rate of  convergence table we see that the 

convergence rates of  our Wavelet-Galerkin method do quite 

well.  In fact it approaches and then surpasses a quadratic 

convergence rate.   

Figs. 8 & 9. (left) Solution snapshots set representing parameter 

space. (right) Singular values calculated from SVD on Snapshot 

set. 

The basis functions computed using the SVD will now act as 

our basis functions to calculate a ROM solution to our ODE.  

It is important to note that these basis functions are not 

compactly supported as they exist over our entire domain 

implying that our matrix will be a dense system.  But the hope 

is that in the end it will take less work to solve a small dense 

linear system as opposed to a large sparse system. 

 

The final step in this process is to construct a ROM solution as 

a linear combination of  our reduced basis functions (𝜓(𝑥)), 
which in turn are linear combinations of  our scaling functions, 

𝜙(2𝑚𝑥 − 𝑘). 

 𝑢𝑅𝑂𝑀 =  𝜇𝑗 𝜓𝑗(𝑥)                           [7] 

where the 𝜇𝑗’s are our values to be computed. 

 

Using the weak problem and our reduced basis function we 

can formulate an equation to calculate the ROM solution.  The 

first term is given by: 

−𝛽 𝜇𝑗 ( 𝐶𝑗𝜙𝑗(2
𝑚𝑥𝑗 − 𝑘))𝑗 ×  

 𝐶𝑖𝜙𝑖(2
𝑚 − 𝑙)𝑖 𝑑𝑥       [8] 

As we can see from this equation we are going to need to 

compute a number of  dot products between the reduced basis 

functions and our connection coefficients.   
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