Reduced Order Modeling for the WaveleGalerkin Approximation of

Introduction

Galerkinmethodsare a commonclassof methodsusedto
approximate ordinary and partial differential equations
(ODE/PDE). Galerkinmethodgelyon the selectiorof aset
of basisfunctionsthat areusedto representhe solutionof

the differential equation Typical basisfunctions include

piecewisdinear and quadraticpolynomialsand sine/cosine
functionsfor spectramethods

From areasof imagecompressiornto speechrecognition
waveletdhave had a profound impacton representingarge
and smallscaledatasetsn the computationakciencaealm
Waveletsalso have a number of featuresthat make them
attractivefunctionsto work with including multiresolution,
compacsupportdifferentiabilitandorthogonality

ReducedOrder Modeling(ROM) is a widelyusedmethodto
reducethe computationakost solving differentialequations
when using standardtechniqueslike the Finite Element
Method (FEM). This researclwill demonstratehe viability
of usingROM with the WaveleGalerkinapproacho solving
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The WaveletGalerkin method cont.

Usingthis definitionof 0 we canre-write our weakproblem
Thefirst termin the problemwouldlook like

BO | T.% ¢ @ a%¢ o QQd¢ [5]

whered determineshe spacindetweerour basisfunctions,
andaand Qarethe scalingunctiontranslates

Figure 4. Scaling basis
function D6, and the
translates where the
derivative inner products
are non-zero
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The WaveletGalerkin method

The first thing to be donein this processs the selectiorof
our wavelebasisfunctions Therearemanychoicesavailable
Including LegendrdDaubechiesrthogonaland biorthogonal
wavelelets But to keepthingssimplefor now we will choose
the Daubechiegamily of orthogonalwavelets Daubechies
waveletareconstructedo maximizeéhe numberof vanishing
momentswhichis correlatedo polynomialorderthe wavelet
can approximate One advantageof Daubechiesscaling
functions,which arefunctionsthat definea givenwaveletjs
that they are compactlysupportedover a given domain
TypicallyDaubechiegvaveletsarereferredo in termsof their
supportDN; so the waveletwith supportover[0,3] is called
D4, [0,5] iscalledD6 etc

Unfortunatelya problemwith waveletsthat d o e ®xistnt
manyof the otherstandardasisunctions,s we do not have
anexplicitformulato calculatéhe functionvalues In orderto
constructthe basisfunctionthoughwe canusewhatis called
thedilationequation
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where w are coefficientvaluesdeterminedby the type of

wavelet One canusearecursivanethod,or what'sknownas
the Cascadalgorithmfo approximatéhe functionvalueona
givendomain

Figs. 1-3. Examples  of
Daubechies scaling and wavelet
functions for D4, D6 and D20
(Starting top left moving
clockwise)

Now that our basiunction hasbeenchosenwve canbeginto
formulateour ODE. UsinghomogeneouBirichletboundary
conditionson wN Tip we seeka discreted satisfyingour
boundaryconditionswith thedifferentialequation

ro 16 | 0 "Qw 2]
whereo is the solutionto our differentialequationandf h

and| areconstants But first lets takea look at the weak
form:
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We will seek6 N w wherew is definedas the space
spannedby all levels ) and translateQ of our scaling

function%.C . Sinced N w and%cC w Q form a
basisyecanwrite

6 BO p%{c ® O [4]

In orderto calculatghe inner productsof this problemwe
mustusea methodproposedoy Latto et al to find whatare
calledconnectioncoefficients Theseconnectioncoefficients
representhe inner productsbetweenwo scalingunctionsat
a given derivativeQ).  Since the scaling functions are
orthogonalwe only needthe connectioncoefficientdor the
terms with derivativesin them becauseahe non-derivative
termsareonlynonzerowhen’Q o

Oncethe connectiorcoefficientiavebeencalculatecall that

needsto be doneis to resolvethe boundaryconditionsand

thensetup asystenof equations$o solvethe problemfor our

0 ; 0.s There are two typical approachedo resolvethe

boundaryconditions

A Add N-1 0 p h a n basisfadctionsthat extendpastthe
endsof the domainto computethe inner productsof our
basidunctionsneartheboundaries

A Modify the connectiorcoefficientsiearthe boundaries

We will chooseo extendour basisfunctionspastthe endsof
our domain Doing so leavesiswith a sparséandedsystem
of equationTomprisedf a combinationof our connection
coefficientdor theirrespectivéerms

Now, to ensurethat our Wavelefalerkinmethodis working

we will formulatea test problemwith a known solutionthat

satisfles our homogeneousDirichlet boundary condition

requiremenso that we cancomputethe erroranddetermine
the ratesof convergenceas we increaseour discretization
Theexactsolutionwewill useis.

0 Ww p with®N Tip [6]
Soif we defineour constantsasf [ | P our right
handsidebecomes@w) w ® ww U; andwe have
everythingveneedo solvethe ODE.

Figs. 5-7. ODE solved with
resolutions: -, - and — (Starting
top left moving clockwise)

Fromthe plotsin figuress-7 we seethatthe Wavelefalerkin
methodappeardo approachthe actualsolutionaswe hoped
Using the exactsolution and the computedsolutionsat a
number of discretization'sve can calculatethe rates of

convergencasthe resolutionis increased Remembethat 'Q
IS calculatedwith respectto ¢ so aswe increased , the
resolutions alsoincreased

h Euclidean distance Error
0.25 0.018618

0.125 0.0117 0.696796

0.0625 0.003785 1.504585

0.03125 0.000954 1.722775

0.015625 0.000198 1.886827

0.007813 2.85E-05 2.261854

whered  will betheunknownsn ourweakproblem

From the rate of convergencetable we see that the
convergenceatesof our WavelefGalerkinmethoddo quite
well In fact it approachesnd then surpassea quadratic

convergenceate
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Reduced Order Modeling

Now thatwe havea methodof computingsolutionsgo O D E ©
usingthe WaveletGalerkinmethodwe can beginto format
our reducedorder model One wayto accomplishthis is
w h a kndwn as the Proper Orthogonal Decomposition
(POD). POD usesthe SingulavalueDecompositionSVD)
to computeanorthogonaketof basissrectorghatcanbeused
to constructsolutionwith onlyafewdegreesf freedom In
SVD the first matrix Y, where0 Y , representghe
columnspacef our matrixo.

The first stepof creatingour reducedorder modelis a pre
processingtepthat involvessolvingthe ODE a numberof
timesfor arangeof parametewalues For our problemwe
will solvethe test problemthat wasusedin the last section
whilevaryind ,[ and| betweenl and2in | increments
Thismeanghatwewill havel25solutiongo fill ourspace

Then we can make w h a taflesl a snapshotmatrix by
compilingthe solutioncolumnvectors we will usethis asour
0 matrixin the SVDto find "Y (ourreducedasisrectors)

Figs. 8 & 9. (left) Solution snapshots set representing parameter
space. (right) Singular values calculated from SVD on Snapshot
set.

The basisfunctionscomputeausingthe SVD will now actas
our basisfunctionsto calculatea ROM solutionto our ODE.
It IS Importantto note that thesebasisfunctions are not
compactlysupportedas they exist over our entire domain
iImplyingthat our matrixwill be adensesystem But the hope
Is thatin the endit will takelesswork to solvea smalldense
linearsystenasopposedo alargesparsesystem

Thefinal stepin thisprocesssto construca ROM solutionas
a linearcombinationof our reducedbasisfunctions( o),
whichin turn arelinearcombination®f our scalingunctions,
%0 C w Q.

0 BT o [7]
wherethe‘ 0 @reourvaluego becomputed

Using the weakproblemand our reducedbasisfunction we
canformulateanequatiorto calculatéhe ROM solution The
first termis givenby.

TB‘>V Bé%OCd)TQ
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As we can seefrom this equationwe are goingto needto
computea numberof dot productsbetweerthe reducedasis
functionsandour connectiorcoefficients

Fig. 10.
ROM solution approximation
using D10 with the level at
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