
RBF-generated Finite Di↵erences for Elliptic PDEs on
Multiple GPUs

Evan F. Bollig1 Gordon Erlebacher1 Natasha Flyer2

1Dept. of Scientific Computing, Florida State University
2Institute for Mathematics Applied to Geosciences (IMAGe), NCAR

Introduction

Radial Basis Functions (RBFs) provide a powerful and elegant solution to calculate weights for
generalized Finite Di↵erences on arbitrary node distributions. Weights apply to stencils of
scattered nodes (e.g., Figure 1) and result in a derivative approximation at the stencil center.
High-order accuracy is easily achieved by increasing the number of nodes per stencil.

Figure 1 : A 75 node RBF-FD stencil with
blue (negative) and red (positive)
di↵erentiation weights to approximate a
derivative at the center (black square).

This e↵ort extends previous work on a multi-CPU/GPU implementation of RBF-FD originally
dedicated to explicit solutions of hyperbolic PDEs [1]. The addition of a GPU-based implicit
solver for elliptic PDEs completes the necessary building blocks required for large-scale GPU
solution of geophysical flows based entirely on the RBF-FD method.

RBF-FD Weights (for one n-node stencil centered at xj)
0

BBBB@

�(✏ ||x1 � x1||) �(✏ ||x1 � x2||) · · · �(✏ ||x1 � xn||) 1
�(✏ ||x2 � x1||) �(✏ ||x2 � x2||) · · · �(✏ ||x2 � xn||) 1

...
�(✏ ||xn � x1||) �(✏ ||xn � x2||) · · · �(✏ ||xn � xn||) 1

1 1 · · · 1 0

1

CCCCA

2

66664

c1
c2
...
cn
cn+1

3

77775
=

2

66664

L�(✏ ||x� x1||)|x=xj
L�(✏ ||x� x2||)|x=xj

...
L�(✏ ||x� xn||)|x=xj

0

3

77775
(1)

I � is Gaussian RBF centered at xk, k = 1, ..., n
I L is some di↵erential operator (i.e., @

@x ,
@
@y , r

2, etc.); form multiple RHS system for e�ciency
I Repeat this n ⇥ n system solve for all N stencils.

Governing Equation

Steady-state viscous Stokes flow on the surface of a sphere:

r · [⌘(ru + (ru)T)] + RaT r̂ = rp

r · u = 0,

Assume constant ⌘ (i.e., r⌘ = 0) to simplify test problem:
0

BBB@

�⌘r2 0 0 @
@x1

0 �⌘r2 0 @
@x2

0 0 �⌘r2 @
@x3

@
@x1

@
@x2

@
@x3

0

1

CCCA

0

BB@

u1
u2
u3
p

1

CCA =
RaTp

x21 + x22 + x23

0

BB@

x1
x2
x3
0

1

CCA . (2)

Simplifications for Development

I r2 operator on the unit sphere:

r2 =
1

r̂

@

@ r̂

✓
r̂2
@

@ r̂

◆

| {z }
radial

+
1

r̂2
�S

|{z}
angular

⌘ �S ,

. Diagonal block RBF-FD weight operator (i.e., RHS of Eq. 1)

�S =
1

4

�
4� r2

� @2

@r2
+
4� 3r2

r

@

@r

�
, (3)

where r is the Euclidean distance between stencil nodes and independent of coordinate system.
I @

@x1
, @
@x2

, @
@x3

must be constrained to the sphere via projection:

Px = I � xxT

. O↵-diagonal block operators:

Px
@

@x1
= (x1x

Txk � x1,k)
1

r

@

@r
|x=xj (4)

Px
@

@x2
= (x2x

Txk � x2,k)
1

r

@

@r
|x=xj (5)

Px
@

@x3
= (x3x

Txk � x3,k)
1

r

@

@r
|x=xj (6)

The Bane of RBF Methods: Choosing the Right Support

I Choice of ✏ determines
accuracy of weights

I Trade-o↵: increase log10 ̂A
for accurate derivatives,
worsen conditioning of
system

I Contours change with
stencil size (n) and
node-distribution

2

4

4

6

6 8

8

10

10

12

12

14

14

16

log10
¯KA, n = 40

p
N

✏
c1

 =
 0

.2
43

, c
2

=
0.

42
0

c1
 =

 0
.1

48, c
2 =

 0
.0

47

c1 = 0.106, c
2 = 0.157

c1 = 0.077, c2 = 0.220

c1 = 0.055, c2 = 0.239

c1 = 0.038, c2 = 0.222

c1 = 0.027, c2 = 0.274

c1 = 0.020, c2 = 0.295

40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

log10
¯KA, n = 80

p
N

✏

c1
 =

 0
.1

61, c
2 =

 0
.0

51

c1 = 0.122, c
2 = 0.160

c1 = 0.095, c
2 = 0.251

c1 = 0.074, c2 = 0.251

c1 = 0.058, c2 = 0.285

c1 = 0.045, c2 = 0.311

c1 = 0.035, c2 = 0.289

c1 = 0.023, c2 = 0.309

40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

Figure 2 : Reliably choose ✏ given a condition number and number
of nodes on the sphere:
✏(N, log10 ̂A) = c1(log10 ̂A)

p
N � c2(log10 ̂A)

GPU Matrix Ordering – Increase Memory Loads

(a) Non-Interleaved
Solution Components

(b) Non-Interleaved
Submatrix (10 : 50)2

(c) Interleaved Solution
Components

(d) Interleaved
Submatrix (10 : 50)2

Figure 3 : Sparsity pattern of linear
system in Equation 2. Solution values
are either non-interleaved and grouped
by component (e.g.,
(u1, · · · , uN, v1, · · · , vN, · · · , p1, · · · , pN)T)
or interleaved (e.g.,
(u1, v1, w1, p1, · · · , uN, vN, wN, pN)T).

I Interleaving simplifies index
management in domain
decomposition

I Improve memory access for certain
sparse storage formats

Decomposition/Communication Sets for Multi-GPU

Figure 4 : Matrix decomposition for one GPU and the
stencils (rows) involved in MPI data transfer

I One GPU is associated with every CPU
I Stencils reordered internally on each GPU:

{Q\B, B\O,O, R}
. Keep O and R contiguous for fast transfer between
CPU and GPU

Manufacture Divergence-Free Fields

I For any function g(x), u = QxPxg(x)
where Qx is the curl projection:

Qx =

2

4
0 �x3 x2
x3 0 �x1
�x2 x1 0

3

5 .

I Spherical Harmonics (Ym
l) test case:

g(x) = 8Y 2
3 � 3Y 5

10 + Y 20
20

P = Y 4
6

(a) Solution Qx(g(x)) with g(x) = 8Y 2
3 � 3Y 5

10+Y 20
20

(b) Manufactured RHS

Implicit Solutions with Preconditioned GMRES

Algorithm 1 : Left-preconditioned GMRES(k)
1: while convergence == false do
2: r0 = M�1(b � Ax0) . MPI Alltoallv
3: � = ||r0||2 . MPI Allreduce
4: v1 = r0/�
5: for j = 1 to k do
6: wj = M�1Avj . MPI Alltoallv
7: for i = 1 to j do
8: hi ,j =< wj , vi > . MPI Allreduce
9: wj = wj � hi ,jvi
10: end for
11: hj+1,j = ||wj ||2 . MPI Allreduce
12: vj+1 = wj/hj+1,j

13: end for
14: Set Vk = [v1, · · · , vk] and H̄k = (hi ,j)
15: Solve: miny2Rk ||�e1 � H̄ky ||2
16: xk = x0 + Vkyk
17: if ||M�1(b � Axk)||2< " then
18: convergence = true
19: end if
20: x0 = xk . MPI Alltoallv
21: end while

I Sparse Matrix-Vector Multiply (SpMV) is true
bottleneck in GMRES

0 2 4 6 8 10
x 105

0

5

10

15

20

25

Sp
ee

du
p

N

UBLAS_CSR_CPU Multiply test
VCL_COO_GPU Multiply test
VCL_CSR_GPU Multiply test
VCL_ELL_GPU Multiply test

Figure 6 : The GPU accelerates the SpMV
by up to 24x over the CPU

I RBF-FD systems are slow to converge
. Investigating preconditioners
. Accurate and convergent solutions may
require stable algorithm for RBF-FD weight
calculation

Acknowledgements

This work is supported by NSF awards DMS-#0934331 (FSU), DMS-#0934317 (NCAR) and
ATM-#0602100 (NCAR). The following computing resources were utilized during this
investigation: the FSU HPC Spear Cluster and the NSF Keeneland Cluster (OCI-0910735).

[1] Evan F. Bollig, Natasha Flyer, and Gordon Erlebacher. Solution to pdes using radial basis function
finite-di↵erences (rbf-fd) on multiple gpus. Journal of Computational Physics, 231(21):7133 –
7151, 2012.

http://image.ucar.edu efb06@fsu.edu http://sc.fsu.edu

http://image.ucar.edu
efb06@fsu.edu
http://sc.fsu.edu

