RBF-generated Finite Differences for Elliptic PDEs on Multiple GPUs

Evan F. Bollig ${ }^{1}$ Gordon Erlebacher ${ }^{1}$ Natasha Flyer²

${ }^{1}$ Dept. of Scientific Computing, Florida State University ${ }^{2}$ Institute for Mathematics Applied to Geosciences (IMAGe), NCAR

GPU Matrix Ordering - Increase Memory Loads

Radial Basis Functions (RBFs) provide a powerful and elegant solution to calculate weights for generalized Finite Differences on arbitrary node distributions. Weights apply to stencils of scattered nodes (e.g., Figure 1) and result in a derivative approximation at the stencil center. High-order accuracy is easily achieved by increasing the number of nodes per stencil.

Figure 1: A 75 node RBF-FD stencil with blue (negative) and red (positive) differentiation weights to approximate a derivative at the center (black square).

This effort extends previous work on a multi-CPU/GPU implementation of RBF-FD originally dedicated to explicit solutions of hyperbolic PDEs [1]. The addition of a GPU-based implicit solver for elliptic PDEs completes the necessary building blocks required for large-scale GPU solution of geophysical flows based entirely on the RBF-FD method.

RBF-FD Weights (for one n-node stencil centered at x_{j})

$\left(\begin{array}{cccc}\phi\left(\epsilon\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\epsilon\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\epsilon\left\|\mathbf{x}_{1}-\mathbf{x}_{n}\right\|\right) & 1 \\ \phi\left(\epsilon\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\epsilon\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\epsilon\left\|\mathbf{x}_{2}-\mathbf{x}_{n}\right\|\right) & 1 \\ \vdots & \cdots & \cdots & \vdots \\ \phi\left(\epsilon\left\|\mathbf{x}_{n}-\mathbf{x}_{1}\right\|\right) & \phi\left(\epsilon\left\|\mathbf{x}_{n}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\epsilon\left\|\mathbf{x}_{n}-\mathbf{x}_{n}\right\|\right) & 1 \\ 1 & 1 & \cdots & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n} \\ c_{n+1}\end{array}\right]=\left[\begin{array}{c}\left.\mathcal{L} \phi\left(\epsilon\left\|\mathbf{x}-\mathbf{x}_{1}\right\|\right)\right|_{\mathbf{x}=\mathbf{x}_{j}} \\ \mathcal{L} \phi\left(\epsilon\left\|\mathbf{x}-\mathbf{x}_{2}\right\|\right) \mid \mathbf{x}_{\mathrm{x}=\mathbf{x}_{j}} \\ \vdots \\ \left.\mathcal{L} \phi\left(\epsilon\left\|\mathbf{x}-\mathbf{x}_{n}\right\|\right)\right|_{\mathbf{x}=\mathbf{x}_{j}} \\ 0\end{array}\right]$
ϕ is Gaussian RBF centered at $x_{k}, k=1, \ldots, n$

- \mathcal{L} is some differential operator (i.e., $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \nabla^{2}$, etc.); form multiple RHS system for efficiency Repeat this $n \times n$ system solve for all N stencils.

Governing Equation

Steady-state viscous Stokes flow on the surface of a sphere:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot\left[\eta\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)\right]+\operatorname{Ra} T \hat{r} & =\nabla p \\
\boldsymbol{\nabla} \cdot \mathbf{u} & =0,
\end{aligned}
$$

Assume constant η (i.e., $\nabla \eta=0$) to simplify test problem:

$$
\left(\begin{array}{cccc}
-\eta \nabla^{2} & 0 & 0 & \frac{\partial}{\partial x_{1}} \\
0 & -\eta \nabla^{2} & 0 & \frac{\partial}{\partial \partial_{2}} \\
0 & 0 & -\eta \nabla^{2} \frac{\partial}{\partial x_{3}} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} & 0
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
p
\end{array}\right)=\frac{R a T}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
0
\end{array}\right)
$$

Simplifications for Development

∇^{2} operator on the unit sphere

$$
\nabla^{2}=\underbrace{\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}\left(\hat{r}^{2} \frac{\partial}{\partial \hat{r}}\right)}_{\text {radial }}+\underbrace{\frac{1}{\hat{r}^{2}} \Delta_{S}}_{\text {angular }} \equiv \Delta_{S},
$$

Diagonal block RBF-FD weight operator (i.e., RHS of Eq. 1)

$$
\begin{equation*}
\Delta_{S}=\frac{1}{4}\left[\left(4-r^{2}\right) \frac{\partial^{2}}{\partial r^{2}}+\frac{4-3 r^{2}}{r} \frac{\partial}{\partial r}\right] \tag{3}
\end{equation*}
$$

where r is the Euclidean distance between stencil nodes and independent of coordinate system. $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}$ must be constrained to the sphere via projection:

$$
P_{x}=1-\mathbf{x x}^{T}
$$

Off-diagonal block operators:

$$
\begin{align*}
& P_{x} \frac{\partial}{\partial x_{1}}=\left.\left(x_{1} \mathbf{x}^{\top} \mathbf{x}_{k}-x_{1, k}\right) \frac{1}{r} \frac{\partial}{\partial r}\right|_{\mathbf{x}=\mathbf{x}_{j}} \tag{4}\\
& P_{x} \frac{\partial}{\partial x_{2}}=\left.\left(x_{2} \mathbf{x}^{\top} \mathbf{x}_{k}-x_{2, k}\right) \frac{1}{r} \frac{\partial}{\partial r}\right|_{\mathbf{x}=\mathbf{x}_{j}} \\
& P_{x} \frac{\partial}{\partial x_{3}}=\left.\left(x_{3} \mathbf{x}^{\top} \mathbf{x}_{k}-x_{3, k}\right) \frac{1}{r} \frac{\partial}{\partial r}\right|_{\mathbf{x}=\mathbf{x}_{j}} \tag{6}
\end{align*}
$$

(5)

The Bane of RBF Methods: Choosing the Right Support

Choice of ϵ determines accuracy of weights Trade-off: increase $\log _{10} \hat{\kappa}_{A}$ for accurate derivatives worsen conditioning of system
Contours change with stencil size (n) and node-distribution

Figure 2: Reliably choose ϵ given a condition number and number of nodes on the sphere:
$\epsilon\left(N, \log _{10} \hat{\kappa}_{A}\right)=c_{1}\left(\log _{10} \hat{\kappa}_{A}\right) \sqrt{N}-c_{2}\left(\log _{10} \hat{\kappa}_{A}\right)$

(a) Non-Interleaved Solution Components
 Submatrix (10:50)

(c) Interleaved Solution

Components

Submatrix $(10: 50)^{2}$

Figure 3: Sparsity pattern of linear system in Equation 2. Solution values are either non-interleaved and grouped by component (e.g.
$\left.\left(u_{1}, \cdots, u_{N}, v_{1}, \cdots, v_{N}, \cdots, p_{1}, \cdots, p_{N}\right)^{T}\right)$ or interleaved (e.g.,
$\left.\left(u_{1}, v_{1}, w_{1}, p_{1}, \cdots, u_{N}, v_{N}, w_{N}, p_{N}\right)^{T}\right)$

- Interleaving simplifies index management in domain decomposition
- Improve memory access for certain sparse storage formats

Decomposition/Communication Sets for Multi-GPU

Figure 4: Matrix decomposition for one GPU and the stencils (rows) involved in MPI data transfer

- One GPU is associated with every CPU
- Stencils reordered internally on each GPU: $\{Q \backslash B, B \backslash O, O, R\}$
Keep O and R contiguous for fast transfer between CPU and GPU

Manufacture Divergence-Free Fields

Acknowledgements

This work is supported by NSF awards DMS-\#0934331 (FSU), DMS-\#0934317 (NCAR) and ATM-\#0602100 (NCAR). The following computing resources were utilized during this investigation: the FSU HPC Spear Cluster and the NSF Keeneland Cluster (OCI-0910735). 1] Evan F. Bollig, Natasha Flyer, and Gordon Erlebacher. Solution to pdes using radial basis function finite-differences (rbf-fd) on multiple gpus. Journal of Computational Physics, 231(21):7133 7151, 2012.

