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Introduction

Radial Basis Functions (RBFs) provide a powerful and elegant solution to calculate weights for
generalized Finite Di↵erences on arbitrary node distributions. Weights apply to stencils of
scattered nodes (e.g., Figure 1) and result in a derivative approximation at the stencil center.
High-order accuracy is easily achieved by increasing the number of nodes per stencil.

Figure 1 : A 75 node RBF-FD stencil with
blue (negative) and red (positive)
di↵erentiation weights to approximate a
derivative at the center (black square).

This e↵ort extends previous work on a multi-CPU/GPU implementation of RBF-FD originally
dedicated to explicit solutions of hyperbolic PDEs [1]. The addition of a GPU-based implicit
solver for elliptic PDEs completes the necessary building blocks required for large-scale GPU
solution of geophysical flows based entirely on the RBF-FD method.

RBF-FD Weights (for one n-node stencil centered at xj)
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I � is Gaussian RBF centered at xk, k = 1, ..., n
I L is some di↵erential operator (i.e., @

@x ,
@
@y , r

2, etc.); form multiple RHS system for e�ciency
I Repeat this n ⇥ n system solve for all N stencils.

Governing Equation

Steady-state viscous Stokes flow on the surface of a sphere:

r · [⌘(ru + (ru)T )] + RaT r̂ = rp

r · u = 0,

Assume constant ⌘ (i.e., r⌘ = 0) to simplify test problem:
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Simplifications for Development

I r2 operator on the unit sphere:
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. Diagonal block RBF-FD weight operator (i.e., RHS of Eq. 1)
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where r is the Euclidean distance between stencil nodes and independent of coordinate system.
I @

@x1
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@x3

must be constrained to the sphere via projection:

Px = I � xxT

. O↵-diagonal block operators:
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The Bane of RBF Methods: Choosing the Right Support

I Choice of ✏ determines
accuracy of weights

I Trade-o↵: increase log10 ̂A
for accurate derivatives,
worsen conditioning of
system

I Contours change with
stencil size (n) and
node-distribution
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Figure 2 : Reliably choose ✏ given a condition number and number
of nodes on the sphere:
✏(N, log10 ̂A) = c1(log10 ̂A)

p
N � c2(log10 ̂A)

GPU Matrix Ordering – Increase Memory Loads

(a) Non-Interleaved
Solution Components

(b) Non-Interleaved
Submatrix (10 : 50)2

(c) Interleaved Solution
Components

(d) Interleaved
Submatrix (10 : 50)2

Figure 3 : Sparsity pattern of linear
system in Equation 2. Solution values
are either non-interleaved and grouped
by component (e.g.,
(u1, · · · , uN, v1, · · · , vN, · · · , p1, · · · , pN)T )
or interleaved (e.g.,
(u1, v1, w1, p1, · · · , uN, vN, wN, pN)T ).

I Interleaving simplifies index
management in domain
decomposition

I Improve memory access for certain
sparse storage formats

Decomposition/Communication Sets for Multi-GPU

Figure 4 : Matrix decomposition for one GPU and the
stencils (rows) involved in MPI data transfer

I One GPU is associated with every CPU
I Stencils reordered internally on each GPU:

{Q\B, B\O,O, R}
. Keep O and R contiguous for fast transfer between
CPU and GPU

Manufacture Divergence-Free Fields

I For any function g(x), u = QxPxg(x)
where Qx is the curl projection:
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I Spherical Harmonics (Ym
l ) test case:

g(x) = 8Y 2
3 � 3Y 5
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(a) Solution Qx(g(x)) with g(x) = 8Y 2
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(b) Manufactured RHS

Implicit Solutions with Preconditioned GMRES

Algorithm 1 : Left-preconditioned GMRES(k)
1: while convergence == false do
2: r0 = M�1(b � Ax0) . MPI Alltoallv
3: � = ||r0||2 . MPI Allreduce
4: v1 = r0/�
5: for j = 1 to k do
6: wj = M�1Avj . MPI Alltoallv
7: for i = 1 to j do
8: hi ,j =< wj , vi > . MPI Allreduce
9: wj = wj � hi ,jvi
10: end for
11: hj+1,j = ||wj ||2 . MPI Allreduce
12: vj+1 = wj/hj+1,j

13: end for
14: Set Vk = [v1, · · · , vk ] and H̄k = (hi ,j)
15: Solve: miny2Rk ||�e1 � H̄ky ||2
16: xk = x0 + Vkyk
17: if ||M�1(b � Axk)||2< " then
18: convergence = true
19: end if
20: x0 = xk . MPI Alltoallv
21: end while

I Sparse Matrix-Vector Multiply (SpMV) is true
bottleneck in GMRES
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UBLAS_CSR_CPU Multiply test
VCL_COO_GPU Multiply test
VCL_CSR_GPU Multiply test
VCL_ELL_GPU Multiply test

Figure 6 : The GPU accelerates the SpMV
by up to 24x over the CPU

I RBF-FD systems are slow to converge
. Investigating preconditioners
. Accurate and convergent solutions may
require stable algorithm for RBF-FD weight
calculation
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