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Models [1]
Linearized Peridynamics Model for Microelastic Materials

ρü(x, t) =

∫
Hx

c
(x′ − x)

⊗
(x′ − x)

|x′ − x|3 (u(x′, t)− u(x, t))dVx′ + b(x, t)

where Hx is a neighborhood of x.

• Steady-state, one dimensional model with a “boundary” condition
1

δ2

∫ x+δ

x−δ

u(x′)− u(x)

|x′ − x| dx′ = b(x), x ∈ Ω

u(x) = g(x), x ∈ Γ

Ω = (α, β), Ω′ = (α− δ, β + δ), Γ = Ω̄′\Ω = [α− δ, α] ∪ [β, β + δ].

• Steady-state, two dimensional model with a “boundary” condition

∫
Hx

c


(x− x′)2

[(x− x′)2 + (y − y′)2]3/2
(x− x′)(y − y′)

[(x− x′)2 + (y − y′)2]3/2

(x− x′)(y − y′)
[(x− x′)2 + (y − y′)2]3/2

(y − y′)2

[(x− x′)2 + (y − y′)2]3/2


(
u1(x, y)− u1(x′, y′)
u2(x, y)− u2(x′, y′)

)
dx′dy′ =

(
b1(x, y)
b2(x, y)

)
, x, y ∈ Ω(

u1(x, y)
u2(x, y)

)
=

(
g1(x, y)
g2(x, y)

)
, x, y ∈ Γ

Ω = (αx, βx)× (αy, βy), Ω′ = (αx− δ, βx+ δ)× (αy− δ, βy + δ), Γ = Ω̄′\Ω.

Motivation from 1D and 2D Results [1, 2]
• Exact solution has a jump discontinuity at a point in 1D and along a straight

line in 2D.

• Garlerkin Finite Element Method for Numerical Computation.

* CL — continuous piecewise linear functions.
Pro: fewer degrees of freedom per triangle.
Con: lower accuracy for discontinuous solutions.

* DL — discontinuous piecewise linear functions.
Con: more degrees of freedom per triangle.
Pro: higher accuracy can be achieved for discontinuous solutions.

• If a grid point is located at the point of discontinuity, ‖u − uh‖L2(Ω′) =

O(h2), ‖u − uh‖L∞(Ω′) = O(h2) for DL and ‖u − uh‖L2(Ω′) = O(h1/2), ‖u −
uh‖L∞(Ω′) = O(h0) for CL.

• If no grid point is located at the point of discontinuity, ‖u − uh‖L2(Ω′) =

O(h1/2) and ‖u− uh‖L∞(Ω′) = O(h0) for both DL and CL.

• However, if one does abrupt local refinement with an element of width h4

surrounding the discontinuity, then for DL ‖u−uh‖L2(Ω′) = O(h2) and, if one
excludes the elements containing the discontinuity, ‖u − uh‖L∞(Ω′) = O(h2)
as well.

• Combine the advantages of CL and
DL method, we can do an abrupt
local refinement h → h4, im-
pose DL on the discontinous inter-
vals/elements, and CL on other in-
tervals/elements.

Problem
Abrupt refinement in 2D and 3D is difficult: the discontinuous path is usually
unkown. Even if it is known, it is hard to refine if it has a more complicated
shape such as a curved line. Adaptive refinement is needed.

Local Grid Refinement
Goals of Refinement Strategy

1. Refine locally to get a thin layer of elements containing the discontinuity

– the elements in the layer should have thickness O(h4) across the layer

– but they should be O(h) parallel to the layer

2. The elements outside the layer should not be thin and have linear dimen-
sion O(h)

3. The transition between the elements in the layer to those outside the layer
should be abrupt

– no transition zone from thin to regular elements

Steps of Refinement

• Step 1. Mark the triangles covering the discontinuous path yellow, split
them into small identical triangles. Repeat this until small size achieved;

• Step 2. Polish the yellow triangles into long quadrilaterals which have
width of O(h4) and length of O(h);

• Step 3. Only retain the vetices of the yellow triangles and put the initial
grid points back to the mesh. Use constrained centroidal Voronoi tes-
sellation to rearrange the grid points in order to have triangles of better
shapes.

Meshes with Different Grid Sizes
As the grid becomes finer, the computational complexity increases rapidly and
thus divide and conquer method and parallel computing is applied to generate
meshes in a reasonable time period.

Future Work
1. Solve 2D peridynamics equations using locally refined grids for cases where

the position of the discontinuity is known;
2. Use adaptive strategies to identify the position of the discontinuity as one

refines the grid;
3. Extend to 3D models.
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