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Abstract Stochastic sampling methods (such as Monte Carlo methods) are used to simulate physical systems whose model parameters are uncertain.
To maintain a given level of accuracy, the spatial fidelity of the physical system being simulated and the number of samples used to estimate the stochastic
quantity of interest should be sufficiently high, which could be computationally expensive. Multilevel methods aim to achieve the same overall accuracy
as traditional sampling methods but at a much reduced computational cost, by making use of a series of simulation models instead of just one, each with
a different level of spatial detail.

———————————————————————————————————————————————————————————————————————————————————————————–

Single Level Methods

The process of computing an approximation vh of a physical quantity of interest v from the output uh of a
numerical simulation with input parameter q is illustrated in the following diagram.

q → Numerical Simulator → uh→ G → vh = G(uh)

Here, h represents the level of spatial accuracy. In the presence of uncertainty, the parameter q is replaced
by a sample of parameters giving rise to a sample of the quantity of interest. We are now interested in
approximating v’s expected value E[v] by means of a numerical quadrature scheme IN .{

q(i)
}N
i=1
→ Numerical Simulator & G →

{
v

(i)
h

}N
i=1
→ IN → IN [vh] ≈ E[v]

The overall approximation error can be decomposed as follows:

‖E[v]− IN [vh]‖ ≤ ‖E[v − vh]‖︸ ︷︷ ︸
Spatial Error

+ ‖E[vh]− IN [vh]‖︸ ︷︷ ︸
Sampling Error

Letting h ↓ 0+ improves the spatial fidelity of each numerical sample (and hence the spatial error), while
increasing N ↑ ∞ leads to a more accurate estimate IN of the stochastic integral E (thus reducing the
sampling error). Both improvements increase the computational cost.
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(a) Total error
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(b) Computational cost

Figure 1: The total error and computational cost as a function of h and N .

The Multilevel Idea

In order to achieve the same level of accuracy but at a reduced cost, we make use of a family of spatial
approximations {vh`

}L`=0 instead of a single approximation vh. Here, h0 is the coarsest (and cheapest)
approximation level and hL is chosen so that the spatial error is small enough. The expected value E[v] can
now be approximated by:

E[v] ≈ E[vhL
] = E[vh0

] +

L∑
`=1

E[vh`
− vh`−1] ≈ IN0

[vh0
] +

L∑
`=1

IN`
[vh`
− vh`−1],

i.e. by an initial estimate on a coarse grid h0, together with a series of correction terms.
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Figure 2: CPU cost per level

This formulation allows us to choose a dif-
ferent sample size N` to approximate the
expectation of each correction term, the
samples of which are computed using nu-
merical simulations at spatial refinement
level h`.

By choosing the sample sizes opti-
mally, based on the decay rate of
the correction terms and on the
computational effort required to
generate samples at each refine-
ment level `, we can achieve a con-
siderable speed-up in the overall
computational time.

If C` is the computational cost of computing one sample at refinement level `, then the minimization problem
whose solution yields the optimal sample sizes {N`}, takes the form

min
{N`}

L∑
`=0

N`C` subject to: Total Error ≤ ε,

where ε is the required error tolerance.

Example

As an illustrative example, consider the following simple two-point boundary value problem on (0, 1)

− d

dx

(
q(x, ω)

du

dx

)
= 0 in (0, 1)

u(0) = 1, u(1) = 0.

(1)

We are interested in the expected value of the flux at the right endpoint E[v] = −E[q(1)u′(1)]. For this
example we use finite volume methods to solve the underlying spatial problem and Monte Carlo averaging
to estimate the expectation.
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(a) Sample size per level
NMLMC

tot = 56030, NMC
tot = 51087
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(b) Computational cost per sample
TMLMC
tot = 5.0623, TMC

tot = 11.0718

Figure 3: The sample sizes and computational costs associated with each level ` at various iterations of the
multilevel algorithm.

For each iteration of the multilevel algorithm, the bulk of the samples are computed at the coarsest spatial
refinement level, whereas the single level Monte Carlo method computes all samples at the highest refinement
level, to guarantee that the spatial error is within tolerance. Even though the total sample size needed by
the multilevel method exceeds that of the single level method, the computational time is reduced by half.

Adaptive Mesh Refinement

If the physical output of interest is spatially varying, then the correction terms vh`
− vh`−1 can be used to

guide adaptivity. We refine the grid in areas where the quantity of interest changes considerably from one
refinement level to the next.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) Unrefined mesh
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(b) Variance of increments
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(c) Adaptively refined mesh

Figure 4: The sample sizes and computational costs associated with each level ` at various iterations of the
multilevel algorithm.
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