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 Bayesian networks (BNs), also known as belief 

networks, belong to the family of probabilistic 

graphical models (GMs). A Bayesian network 

consists of a graphical structure and a probabilistic 

description of the relationships among different 

variables of the system analyzed. The graphical 

structure explicitly represents cause and effect 

relationships that allow a complex causal chain 

linking actions to be factored into an articulated 

series of conditional relationships. Due to these 

characteristics, Bayesian networks can be 

particularly useful for uncertainty quantification of 

complex groundwater reactive transport models 

with multiple components related by different 

dependencies.  

 A Bayesian network approach for quantifying 

the uncertainty of a groundwater reactive transport 

model is presented in this research. The uncertainty 

of future climate (i.e. precipitation variability and 

flooding) and different anthropogenic pressure such 

as land use are described as uncertain nodes in the 

Bayesian network. All the variables are 

characterized by multiple states, representing their 

uncertainty, in the form of continuous or discrete 

probability distributions that are propagated to the 

model endpoint which is the spatial distribution of 

certain chemical concentrations.  

 After building the Bayesian network, 

uncertainty quantification is done through the 

probabilistic inferences which can obtain the 

posterior probability distributions over variables of 

interest. Most exact inference methods are not 

suitable for this study since the developed hybrid 

Bayesian network contains continuous nodes and 

their state values are described by partial 

differential equations. An approximate inference 

method: Monte Carlo (MC) is used to solve this 

problem through sampling. This Bayesian network 

can be widely applied into most contaminated sites 

with different nodes states and probability 

distributions. The uncertainty quantification results 

can be useful for the environmental managers and 

decision makers to formulate policies and 

strategies.  

,     

 

2. Bayesian Network Approach 

     2.1 Background 

   As shown in Figure 1, each node in the graph represents a 

uncertain variable, while the edges between the nodes 

represent probabilistic dependencies among the 

corresponding random variables.  

   In this research, a Bayesian network is constructed to 

quantify the uncertainties of a general groundwater 

reactive transport model. Figure 1 shows the Bayesian 

network structure. 

2.2 Structure 

Figure 1. Bayesian network structure 

2.3 Application 

 For the purposes of testing and demonstration, the 

Bayesian network structure described above was 

simplified and applied into a test case. The land use, 

bioremediation and temperature nodes were deleted. Their 

related edges were also omitted. 

 A simple synthetic one dimensional groundwater 

reactive transport case was built. The synthetic domain is 

illustrated in Figure 2. One set of single direction chemical 

reactions including five reactants were considered in this 

test case. The reactions are shown in Figure 3. Governing 

equations for this reactive transport system can be 

expressed as: 

 

 

 

 

where ci is the concentration of certain reactant [mg/L]; 

Dx, Dy and Dz are the hydrodynamic dispersion 

coefficients [ft2/yr]; vs is the groundwater seepage velocity 

[ft/yr]; ki is the first-order degradation coefficient [1/yr]; yi 

is the yield coefficient; and Ri is the retardation factor; n is 

the reactant number which is five in this case. 

 Although all the nodes in the network can have multi-

states and corresponding probabilities. The test case only 

consider one unique flow and transport model. This means 

the nodes 16, 17, 18 and 20 only have one state. 

 Uncertain nodes were described through both 

continuous and discrete probability distributions. For 

example, the precipitation values were assumed to follow 

normal distribution. Flooding events is assumed to happen 

with a 0.2 probability. 

 

3. Uncertainty Quantification 

     

Figure 6. The mean and standard deviation of hydraulic head (a) and 

PCE concentration (b) plotted simultaneously for the whole domain. 

Figure 4. Hydraulic head (a) and concentration of PCE (b) 

distributions at location x = 1000 meters . 

 The histograms reveal that the distribution patterns are 

similar for hydraulic head but totally different for 

concentration of PCE at different locations. 

   The results show that the mean and standard deviation 

values of the two variables vary at the location. Larger 

uncertainties of the hydraulic head and the PCE 

concentration coincide with their larger mean values.  

This phenomenon fits with what Figure 5 shows.   

       
  

4. Conclusions and Discussions 

      The Bayesian network was built with considering 

uncertainties in the groundwater reactive transport 

model. 

 The model results in form of probability 

distributions are useful to environmental protection and 

management. 

 The Bayesian network has not been calibrated 

against existing data, i.e., evidence. 

 Although the application described in this poster is 

based on a simple synthetic case, this Bayesian 

network can be applied into most general realistic 

cases.  

    

 A directed graph is defined as a pair (V, E), 

where V is a finite, nonempty set whose elements 

are called nodes (or vertices), and E is a set of 

ordered pairs of distinct elements of V. Elements of 

E are called edges (or arcs). If there is no path 

existed to start at some vertex v and follow a 

sequence of edges that eventually loops back to v 

itself, this directed graph is called a Directed 

Acyclic Graph (DAG). 

 Considering n random variables X1,…, Xn, a 

directed acyclic graph with n numbered nodes, and 

suppose node j (1 ≤ j ≤ n) of the graph is associated 

to the Xj variable. Then the graph is a Bayesian 

network, representing the variables X1,…, Xn, if: 

 

 

 

1. Introduction 

Figure 2. The synthetic domain illustration.  

Figure 3. Chemical reactions involved in the test case. 

PCE: Perchloroethylene, TCE: Trichloroethene, DCE: Dichloroethene.   

 The uncertainty quantification was implemented 

through the Bayesian network inference which 

represents the process of computing the posterior 

distribution of variables given evidence.  

 Direct sampling Monte Carlo method was used in 

our Bayesian network inference. Ten thousands 

simulations were run and the histograms of hydraulic 

head and PCE concentration at location x = 1000 meters 

and 5000 meters are shown in Figure 4 and 5. 
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where parents(Xj) denotes the set of all variables Xi, 

such that there is an arc from node i to node j in the 

graph.                                                                                                                                                      
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Figure 5. Hydraulic head (a) and concentration of PCE (b) 

distributions at location x = 5000 meters . 
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