
Modeling the Predictions of Supersymmetry at the LHC
using Bayesian Neural Networks
Michelle E. Perry, Dr. Anke Meyer-Baese, Dr. Harrison Prosper*

Florida State University, Department of Scientific Computing, *Department of Physics

Physics Motivation

There exist many unanswered questions in the area of High Energy Physics
(HEP), even with the recent discovery of the Higgs boson. What is dark
matter? Why is the Higgs mass so low? The currently accepted theory, the
Standard Model (SM), provides no answers to these questions. Therefore,
physicists are working on theories beyond the SM that may provide answers.
One well-motivated class of theories is based on supersymmetry (SUSY),
which associates each fundamental particle in the SM with a
supersymmetric counterpart. A key prediction of SUSY is
that supersymmetric particles, known as “sparticles”, will be created in
pairs in high energy collisions, for example, gluino pairs as illustrated in the
Feynman diagrams below. If these SUSY theories are viable, their
predictions must be consistent with the observations being made at the
Large Hadron Collider (LHC).

Figure : Feynman diagrams depicting gluino pair production at the LHC.

Testing Supersymmetric Theories

By far the most popular of the SUSY theories is the minimal
supersymmetric SM (MSSM), a 119-parameter model that has the ability
to address some of the unanswered questions mentioned above. However, it
remains nearly impossible to study the validity of the MSSM because of its
huge parameter space, so traditionally physicists have imposed constraints
on the model. A commonly used model to test the SUSY hypothesis is the
constrained minimal supersymmetric SM (CMSSM), a highly constrained
sub-model of the MSSM. The constraints make working with this model
computationally feasible. But, unfortunately, the constraints are so
stringent that the falsification of the CMSSM would not invalidate the
MSSM [2]. A less-constrained model of the MSSM, the phenomenological
minimal supersymmetric SM (pMSSM), is a sub-model that encapsulate
most of the possible physics of the MSSM. However, the computational
burden of testing the pMSSM hinders its routine use. Therefore, we
propose a parallelized method to create functional mappings of the
19-dimensional model space to observable predictions, which will make it
possible to use standard techniques for analyzing this theory.

MSSM : 119

pMSSM : 19

CMSSM : 4

Figure : Graphical representation of the MSSM model space and a couple of the sub models
that are being studied. The value adjacent to the model name is the number of free
parameters in the space.

Testing the pMSSM at the LHC

For each 19-dimensional point in the parameter space, the pMSSM makes
predictions, yi = fi(θ1 . . . θ19), for quantities such as sparticle masses and
cross sections. However, these predictions are given only at a discrete set of
points, which could number in the millions. Statistical approaches that
require a smooth mapping can not be applied. Our proposed solution to
this problem is to model the pMSSM predictions using Bayesian Neural
Networks (BNNs), which for this application, is given by

f (θ) =

∫
n(θ, ω)P(ω|T)dω, (1)

where ω are the free parameters of the neural network n(θ, ω) and T are
the training data [1], consisting of the ensemble of pMSSM parameter
points and the associated predictions. This will provide the smooth
mappings needed for standard statistical methods. The advantage of BNNs
over neural networks is that BNNs are less prone to over-training and they
provide estimates of the accuracy of the mappings.

Bayesian Neural Networks

In this work we focus on networks that map many inputs to a single output.
Such a network can be represented as:

f (θ, ω) = a +
H∑
j=1

bj tanh(cj +
N∑
i=1

dji θi) (2)

where ω are the neural network parameters, H is the number of hidden
nodes in the network, and N = 19 is the number of pMSSM parameters.
This network employs one hidden layer, and tanh is the chosen “activation
function” for the neurons. In the Bayesian approach, one assigns a
probability density to every point in the parameter space of the neural
network so that one can assign meaning to the statement that one point in
the neural network parameter space is more probable, given the training
data, than another. We can compute the probability density p(ω|T) where
ln p(θ|T) is given by

K∑
n=1

wn [tn − f (θn, ω)]
2 , (3)

K is the number of examples in the training data, T = {tn, θn}, wn is a
weight associated with each example, and tn are the targets, that is,
predictions yn associated with the pMSSM parameter points θn. The prior
for each network parameter is taken to be a Gaussian centered at zero. The
training of a Bayesian neural network entails sampling points ωk from
p(ω|T). We do so using Markov Chain Monte Carlo. For SUSY
applications, K ∼ millions, which renders these calculations a formidable
challenge. In order to demonstrate the viability of this approach, and the
challenge, we generated a mapping from the pMSSM parameter space to
the mass of one of the sparticles, the gluino. Figure 1 shows an example of
the BNN modeling of the function mg̃ = f (θ1, · · · , θ19), where mg̃ is the
mass the gluino and θ1 . . . θ19 are the parameters of the pMSSM. This
function is based on a BNN with N = 19, H = 40, and K = 20, 000
training patterns. This calculation took 20 hours on a single Intel Core i7
CPU @ 2.67 GHz. An implementation of this algorithm with a 100 factor
speedup would decrease the computation time to about 12 minutes.

 (true) GeVg~m
0 1000 2000 3000

 (
B

N
N

) 
G

eV
g~

m

0

1000

2000

3000

Figure : BNN predicted mass of the gluino vs. mass from the pMSSM predictions.

GPU Implementation

Our goal is to reduce the time required to train multivariate BNNs by at
least two orders of magnitude, through careful optimization of the most
time-consuming part of the training algorithm, namely, the calculation of
the large sum of highly non-linear functions (Eq. 3). Graphical Processing
Units (GPUs) are ideal for this application because the calculations of each
event of training data, T , are independent. We ideally want to train on
orders of 105 − 106 events, so the GPU is preferable to parallel CPU
implementations due to the many-core nature of the GPUs. A parallel
reduction algorithm is then used on the results from each event to give us
P(X |ω). Current work utilizes NVIDIA’s CUDA C extension on a single
GPU, with hopes of expanding to multiple GPUs on the new FSU SPEAR
GPU cluster.

References

Pushpalatha C. Bhat and Harrison B. Prosper.
Bayesian neural networks, Nov 2005.

S. Sekmen et al.
Interpreting lhc susy searches in the phenomenological mssm.
J. High Energy Phys., Jan 2012.

http://www.sc.fsu.edu/~mep03e mep03e@my.fsu.edu


