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1. Introduction

Peridynamics [1, 2] is a recently developed non-local theory of continuum
mechanics that is useful in simulating multi-scale phenomena. Its formu-
lation is based upon an integral equation of motion, so that discontinuities
may spontaneously form and propagate without special treatment. Thus
it is well-suited to modeling materials phenomena that involve discontinu-
ities, such as fracture, dislocations, and phase transitions. In this work,
we investigate the suitability of several meshing strategies for simulating
a peridynamic brittle impact model. We present a qualitative comparison
of the fracture patterns that result, and suggest best practices for gener-
ating meshes that lead to efficient, high-quality numerical simulations of
peridynamic models.
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Figure 1: Kinematic quantities that describe a peridynamic continuum body
in its reference (B0) and current (B) configurations.

2. Theory

Peridynamic theory is a reformulation of continuum mechanics that em-
ploys a non-local force model to account for long-range material interac-
tions. It is governed by an integro-differential equation of motion that avoids
spatial derivatives,

ρ
∂2u

∂t2
(x, t) =

∫
Hx
f (u′ − u,x′ − x) dVx′ + b (x, t) . (1)

The pairwise internal force function f (η, ξ) contains all of a material body’s
constitutive information and the force term b (x, t) accounts for all external
forces acting upon the body.

We restrict our study to micro-elastic materials, in which the pairwise force
function is conservative, so f (η, ξ) can be written as the gradient of a
scalar micro-potential,

f (η, ξ) =
∂w

∂η
(η, ξ) . (2)

We postulate that the micropotential can be separated into bonded and
non-bonded contributions, so that w = wb + ws. Bonded particles exert a
force on each other that is analogous to an elastic spring,

wb =
1

2

cb

‖ξ‖
µ (‖η + ξ‖ − ‖ξ‖)2 . (3)

This expression contains the scalar quantity µ, which tracks the history of
damage to each bond. We use a brittle damage model, so that bonds
stretched beyond a certain critical extension are broken irreversibly,

µ (t, ξ) =

{
1 s(t′, ξ) < s0(t

′) ∀ t′ ∈ (0, t)

0 otherwise
. (4)

In addition to the bonded forces, a short-range repulsive force is introduced
to prevent the overlap of moving material.

ws =
1

2

cs

δ
(‖η + ξ‖ − ds)2 , (5)

where ds is a chosen short-range interaction distance.

3. Numerical Method

Various numerical integration techniques have been useful in approximat-
ing the peridynamic equation of motion, including Gaussian quadrature,
finite elements, and spectral methods. Our solution scheme uses the so-
called mesh-free “EMU” method [3] which discretizes spatial quantities us-
ing the composite quadrature rule,

ρ
∂2uni
∂t2

=
∑
p

f
(
unp − uni ,xp − xi

)
Vp + bni , (6)

and temporal quantities using a central difference (Verlet) method,

∂2uni
∂t2

≈ u
n+1
i − 2uni + un−1

i

(∆t)2 , (7)

In the above equations, superscripts indicate the time step number during
which a quantity is evaluated, and subscripts represent the node number.

4. Problem Setup

The impact of a target by a high speed projectile has become a benchmark
problem for peridynamics. In this section, we use the impact problem as a
prototype for investigating how meshing affects fracture simulations. The
initial problem geometry consists of a high speed spherical projectile inci-
dent upon a cylindrical plate. The impactor has radius r = 0.45 cm. The
target has radius R = 3.75 cm and thickness H = 0.30 cm. The center of
the projectile is displaced by a distance d0 = 0.18 cm, which is slightly larger
than r + δ, from the top surface of the plate. As the simulation transpires,
the impactor collides with the target with both sustaining damage.
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The bodies have the same composition, with mass density ρ = 2200 kg m−3,
horizon δ = 5 × 10−03 m, critical stretch s0 = 5 × 10−04, bonded modulus
cb = 1.686× 1022 N m−4, and non-bonded modulus cs = 15cb.

∆t = 2.0× 10−8 ∆t = 1.0× 10−8 ∆t = 0.5× 10−8

m
=

2

Avg. Damage 0.9739 Avg. Damage 0.4808 Avg. Damage 0.3646

m
=

3

Avg. Damage 0.2985 Avg. Damage 0.2493 Avg. Damage 0.2386

m
=

4

Avg. Damage 0.4054 Avg. Damage 0.4065 Avg. Damage 0.4090

Table 1: Effects of spatial and temporal refinement on damage patterns. All
simulations use a simple cubic grid and an impact velocity of 100 m/s.

Perturbed Centroidal
Simple Cubic Simple Cubic Voronoi Generators

S
pe

ed
50

m
/s

Avg. Damage 0.1727 Avg. Damage 0.1643 Avg. Damage 0.1905

S
pe

ed
10

0
m
/s

Avg. Damage 0.2493 Avg. Damage 0.2032 Avg. Damage 0.3624

S
pe

ed
20

0
m
/s

Avg. Damage 0.5643 Avg. Damage 0.5596 Avg. Damage 0.6050

Table 2: Effects of impactor speed on damage patterns. All simulations were
carried out with the same number of quadrature points (corresponding to a
simple cubic grid with m = 3) and time step ∆t = 10−8.

5. Motivation

• The simple cubic grid is a straightforward generalization of a uniform
1-D mesh to multiple dimensions. The regularity of tensor product grids
may not always be desirable, especially in fracture simulations where
cracks have a tendency to follow symmetry lines in the mesh.

• A uniform random perturbation can be introduced to break symme-
tries in the simple cubic grid. Modifying the particle positions affects the
accuracy of the quadrature scheme and introduces a source for addi-
tional computation errors.

• The generator points for a centroidal Voronoi tessellation (CVT) have
previously been reported [4] to be high quality point sets for (local) mesh-
less methods. CVT point distributions provide a more-faithful resolution
of curved boundaries (avoiding the Cartesian staircase effect), and sup-
port adaptive refinement and non-uniform point densities.

Perturbed Centroidal
Simple Cubic Voronoi Generators

Tr
ia

l1

Avg. Damage 0.2032 Avg. Damage 0.3624

Tr
ia

l2

Avg. Damage 0.2008 Avg. Damage 0.3968

Tr
ia

l3

Avg. Damage 0.2012 Avg. Damage 0.3562

Tr
ia

l4

Avg. Damage 0.2063 Avg. Damage 0.3938

Table 3: Multiple realizations of the irregular grid types demonstrate the vari-
ety of fracture patterns that each supports. All simulations contain the same
number of grid points (corresponding to a simple cubic grid with m = 3), use
an impact velocity of 100 m/s, and time step ∆t = 10−8 s.

6. Summary & Conclusion

In this poster,

• we provided evidence that the time and space domains contained suffi-
cient detail, then demonstrated how the computational mesh exerts in-
fluence on the outcome of the simulations at intermediate resolutions.

• the regularity of the cubic meshes was problematic, resulting in cracks
that propagate along lines of symmetry in the mesh

• fracture patterns on the CVT generators contained complex branching
patterns that compared favorably to the results obtained at higher reso-
lutions.

• repeated simulations of the irregular grids displayed noticeably different
crack paths, but represent qualitatively similar behaviors.

Peridynamic theory shows great promise in describing materials phenom-
ena that include evolving discontinuities. To fully realize this promise it will
be important to develop strategies that ensure the computational mesh ex-
erts minimal interference on the outcome of a simulation.
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