

Mesh Sensitivity in Peridynamic Simulations

Steven F. Henke and Sachin Shanbhag

Scientific Computing, Florida State University, Tallahassee, FL 32306, USA

1. Introduction

Peridynamics [1, 2] is a recently developed non-local theory of continuum mechanics that is useful in simulating multi-scale phenomena. Its formulation is based upon an integral equation of motion, so that discontinuities may spontaneously form and propagate without special treatment. Thus it is well-suited to modeling materials phenomena that involve discontinuities, such as fracture, dislocations, and phase transitions. In this work, we investigate the suitability of several meshing strategies for simulating a peridynamic brittle impact model. We present a qualitative comparison of the fracture patterns that result, and suggest best practices for generating meshes that lead to efficient, high-quality numerical simulations of peridynamic models.

4. Problem Setup

The impact of a target by a high speed projectile has become a benchmark problem for peridynamics. In this section, we use the impact problem as a prototype for investigating how meshing affects fracture simulations. The initial problem geometry consists of a high speed spherical projectile incident upon a cylindrical plate. The impactor has radius $r = 0.45 \,\mathrm{cm}$. The target has radius $R = 3.75 \,\mathrm{cm}$ and thickness $H = 0.30 \,\mathrm{cm}$. The center of the projectile is displaced by a distance $d_0 = 0.18 \text{ cm}$, which is slightly larger than $r + \delta$, from the top surface of the plate. As the simulation transpires, the impactor collides with the target with both sustaining damage.

5. Motivation

• The **simple cubic grid** is a straightforward generalization of a uniform 1-D mesh to multiple dimensions. The regularity of tensor product grids may not always be desirable, especially in fracture simulations where cracks have a tendency to follow symmetry lines in the mesh.

• A uniform random perturbation can be introduced to break symmetries in the simple cubic grid. Modifying the particle positions affects the accuracy of the quadrature scheme and introduces a source for additional computation errors.

• The generator points for a centroidal Voronoi tessellation (CVT) have previously been reported [4] to be high quality point sets for (local) meshless methods. CVT point distributions provide a more-faithful resolution of curved boundaries (avoiding the Cartesian staircase effect), and support adaptive refinement and non-uniform point densities.

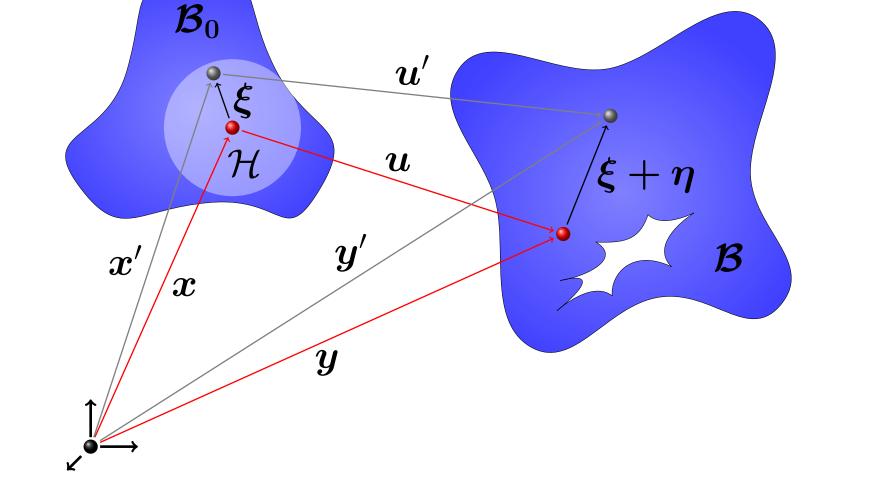


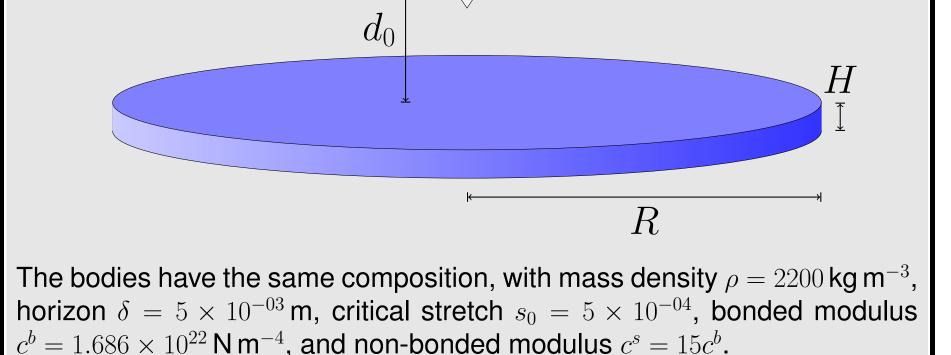
Figure 1: *Kinematic quantities that describe a peridynamic continuum body* in its reference (\mathcal{B}_0) and current (\mathcal{B}) configurations.

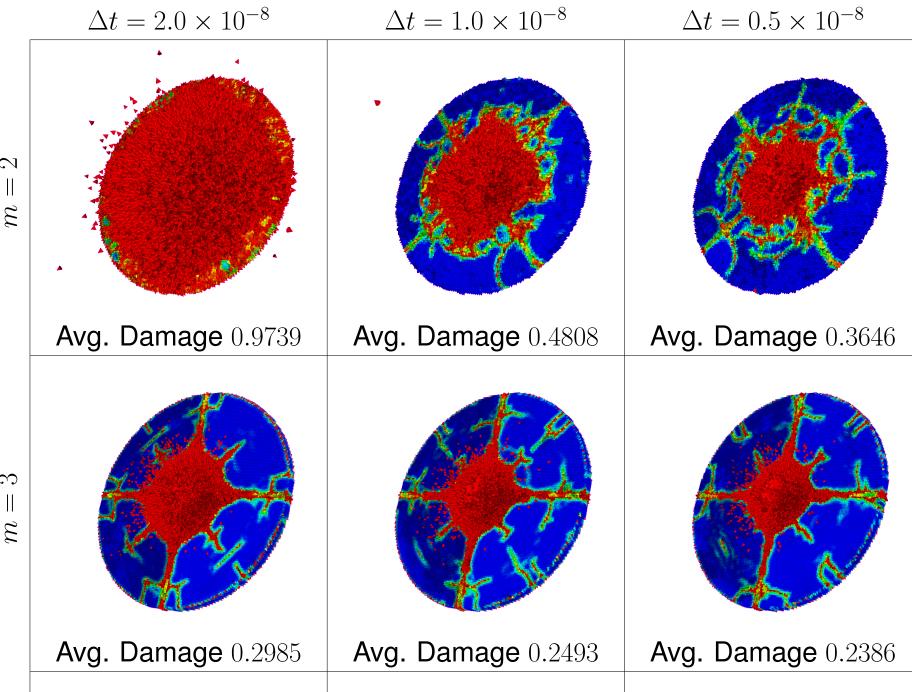
2. Theory Peridynamic theory is a reformulation of continuum mechanics that employs a non-local force model to account for long-range material interactions. It is governed by an integro-differential equation of motion that avoids spatial derivatives,

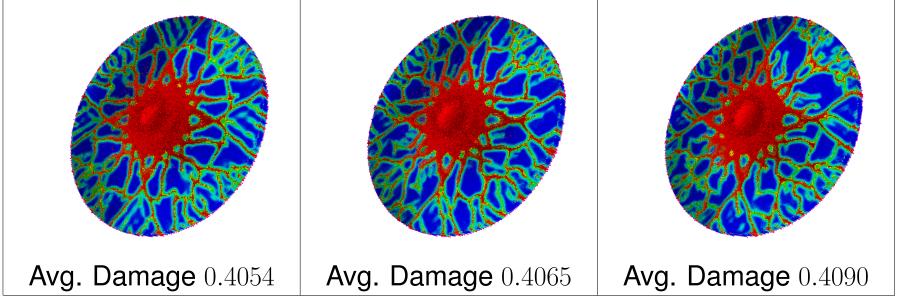
$$\rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2} \left(\boldsymbol{x}, t \right) = \int_{\mathcal{H}_{\boldsymbol{x}}} \boldsymbol{f} \left(\boldsymbol{u}' - \boldsymbol{u}, \boldsymbol{x}' - \boldsymbol{x} \right) dV_{\boldsymbol{x}'} + \boldsymbol{b} \left(\boldsymbol{x}, t \right).$$
(

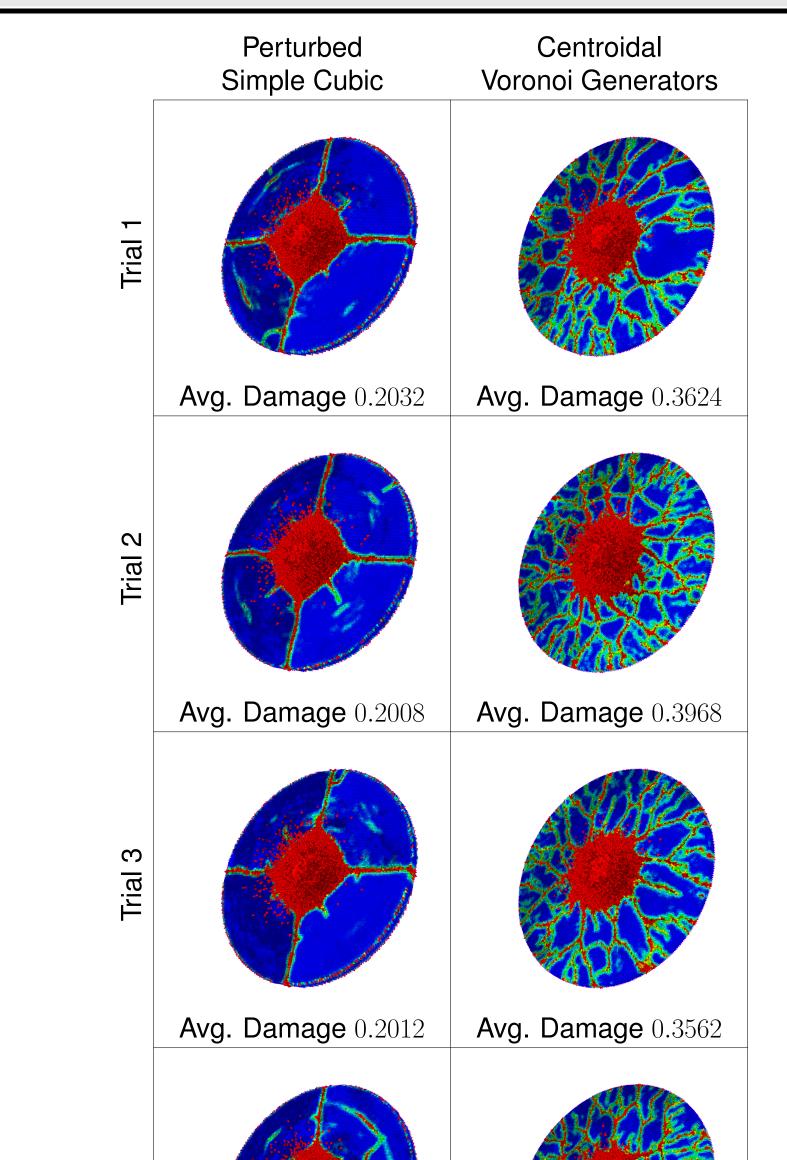
The pairwise internal force function $f(\eta, \xi)$ contains all of a material body's constitutive information and the force term $\boldsymbol{b}(\boldsymbol{x},t)$ accounts for all external forces acting upon the body.

We restrict our study to micro-elastic materials, in which the pairwise force function is conservative, so $f(\eta, \xi)$ can be written as the gradient of a scalar micro-potential,









 $\boldsymbol{f}(\boldsymbol{\eta},\boldsymbol{\xi}) = rac{\partial w}{\partial \boldsymbol{\eta}}(\boldsymbol{\eta},\boldsymbol{\xi}).$

(2)

(3)

(4)

(5)

 $50 \,\mathrm{m}/$

Speed

Speed $100 \, \mathrm{m}_{
m s}$

200

ed

Spe

We postulate that the micropotential can be separated into bonded and non-bonded contributions, so that $w = w^b + w^s$. Bonded particles exert a force on each other that is analogous to an elastic spring,

$$w^{b} = \frac{1}{2} \frac{c^{b}}{\|\boldsymbol{\xi}\|} \mu \left(\|\boldsymbol{\eta} + \boldsymbol{\xi}\| - \|\boldsymbol{\xi}\| \right)^{2}.$$

This expression contains the scalar quantity μ , which tracks the history of damage to each bond. We use a brittle damage model, so that bonds stretched beyond a certain critical extension are broken irreversibly,

$$\mu\left(t,\xi\right) = \begin{cases} 1 & s(t',\xi) < s_0(t') \; \forall \; t' \in (0,t) \\ 0 & \text{otherwise} \end{cases}.$$

In addition to the bonded forces, a short-range repulsive force is introduced to prevent the overlap of moving material.

$$w^{s} = rac{1}{2}rac{c^{s}}{\delta}\left(\|\boldsymbol{\eta} + \boldsymbol{\xi}\| - d^{s}
ight)^{2},$$

where d^s is a chosen short-range interaction distance.

Various

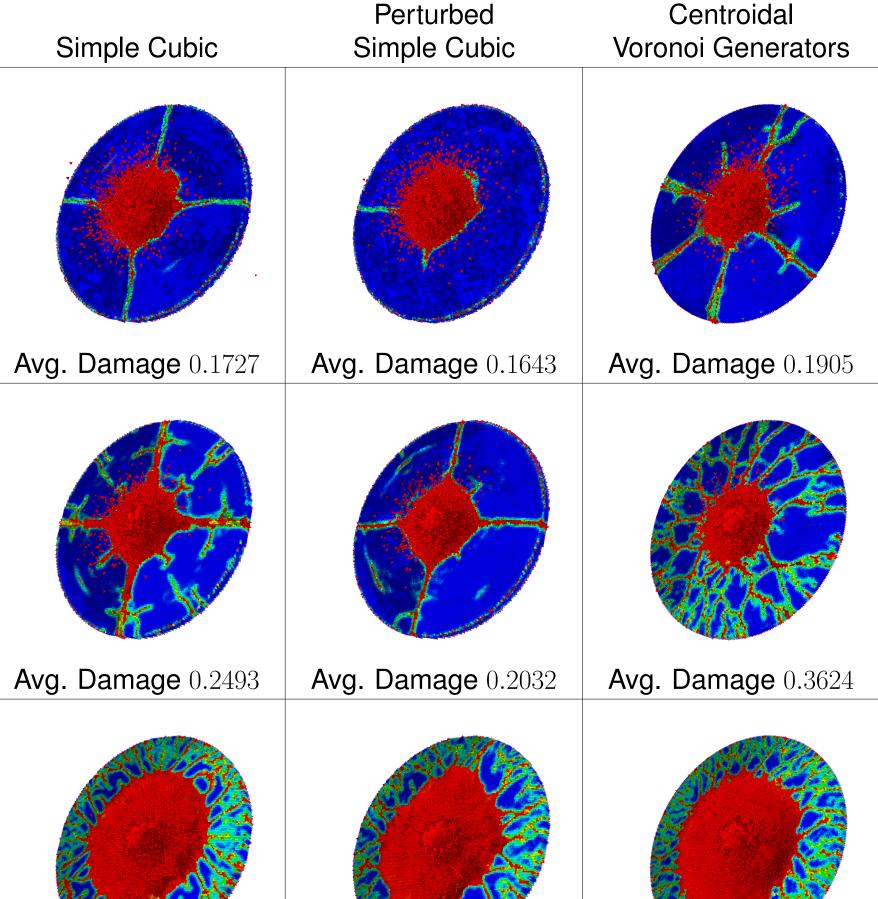
ing the

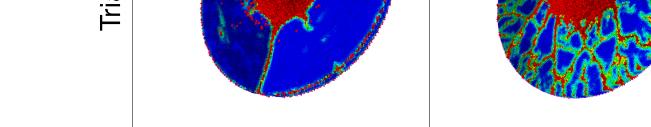
3. Numerical Method
Various numerical integration techniques have been useful in approximating the peridynamic equation of motion, including Gaussian quadrature, finite elements, and spectral methods. Our solution scheme uses the so-called mesh-free "EMU" method [3] which discretizes spatial quantities using the composite quadrature rule,

$$\rho \frac{\partial^2 \boldsymbol{u}_i^n}{\partial t^2} = \sum_p \boldsymbol{f} \left(\boldsymbol{u}_p^n - \boldsymbol{u}_i^n, \boldsymbol{x}_p - \boldsymbol{x}_i \right) V_p + \boldsymbol{b}_i^n, \quad (6)$$

and temporal quantities using a central difference (Verlet) method,

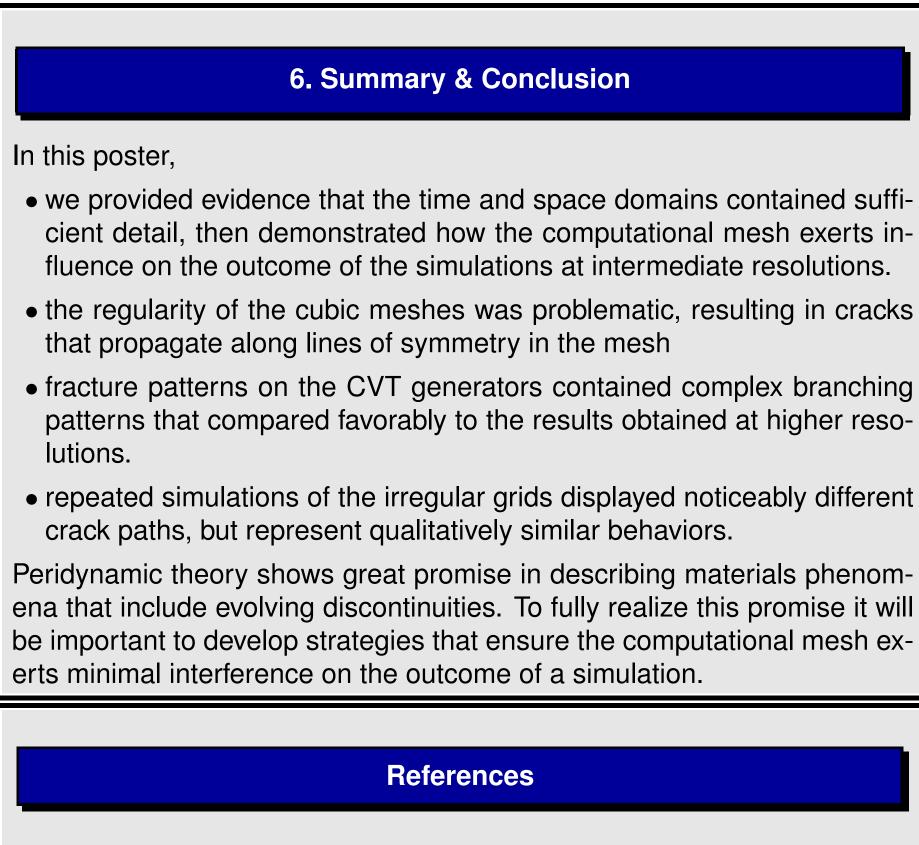
Table 1: Effects of spatial and temporal refinement on damage patterns. All simulations use a simple cubic grid and an impact velocity of 100 m/s.



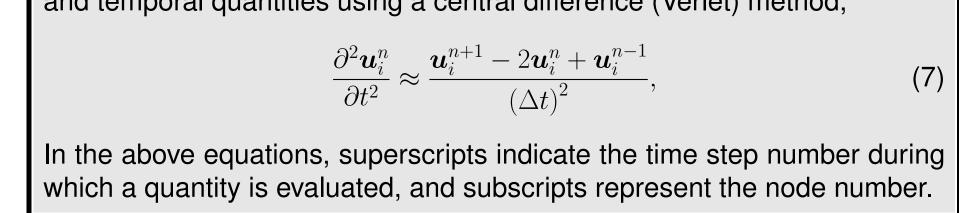


Avg. Damage 0.2063 **Avg. Damage** 0.3938

Table 3: Multiple realizations of the irregular grid types demonstrate the variety of fracture patterns that each supports. All simulations contain the same number of grid points (corresponding to a simple cubic grid with m = 3), use an impact velocity of 100 m/s, and time step $\Delta t = 10^{-8} \text{ s}$.



[1] S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces.



Avg. Damage 0.5643 **Avg. Damage** 0.5596 **Avg. Damage** 0.6050

Table 2: Effects of impactor speed on damage patterns. All simulations were
 carried out with the same number of quadrature points (corresponding to a simple cubic grid with m = 3) and time step $\Delta t = 10^{-8}$.

Journal of the Mechanics and Physics of Solids, 48(1):175–209, 2000.

[2] S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and constitutive modeling. *Journal of Elasticity*, 88:151–184, 2007.

[3] S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83(17-18):1526–1535, 2005.

[4] Qiang Du, Max Gunzburger, and Lili Ju. Meshfree, probabilistic determination of point sets and support regions for meshless computing. Computer Methods in Applied Me*chanics and Engineering*, 191(13-14):1349–1366, 2002.

FSU Department of Scientific Computing **Computational Expo 2013**, 10 April 2013