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Nonlocal theories refer to a set of  concepts and methods that 

can be used in lieu or in combination of  currently existing 

techniques used to solve differential equations.  Peridynamics 

is a class of  methods contained within these nonlocal theories 

that was developed in order to accurately model discontinuities 

in certain applications like fracture dynamics.  These nonlocal 

methods rely on what is commonly referred to as a horizon, or 

radius in which surrounding particles interact with one 

another. 
 

Reduced Order Modeling (ROM) is a widely used class of  

methods used to reduce the computational cost of  solving 

differential equations using standard techniques like the Finite 

Element Method (FEM) among others.  The ROM method 

that we will use in this research is called the Proper 

Orthogonal Decomposition (POD) and makes use of  the 

Singular Value Decomposition (SVD) to develop an intelligent 

set of  reduced basis functions.   
 

This research will demonstrate the viability of  using ROM 

coupled with a nonlocal approach to solving a one dimensional 

time dependent nonlocal equation.  In order to construct our 

reduced order nonlocal solution we will follow the provided 

steps: 

 

1. Solve the differential equation a large number of  times 

while varying the parameter inputs to understand how the 

solution behaves with respect to a given set of  inputs.  

This is called collecting snapshots. 

2. Use SVD on the snapshot set to form a reduced set of  

basis functions that intelligently captures the major 

features and trends of  how the differential equation 

responds to different input parameters. 

3. Construct the reduced order solution to the differential 

equation using as few reduced basis functions as it takes 

to accurately represent the solution to the differential 

equation. 

 

We will attempt to follow these general steps in order to 

construct a reduced order solution to our one dimensional 

time dependent nonlocal equation. 

 

Figure 1. An illustration of 

how particles in the 

reference frame or within 

the horizon itself interact 

but there are no 

interactions outside of this 

frame 

The first item of  business in constructing our reduced order 

nonlocal solution is solving the nonlocal equation a number of  

times with varying parameter inputs to see how the solution 

responds.  But before this, we must define the nonlocal 

equation that we wish to solve. 
 

S. A. Silling first introduced the concept of  defining a horizon 

where only particles within some radius are allowed to interact, 

or “see” one another.  By applying his theories and 

methodology, it can be shown that one can form the following 

integro-differential equation: 

 

 

 

where 𝜌 is the mass density in the reference configuration, 𝒙 

and 𝒙′ are the different locations of  the two particles within 

our reference frame, 𝐻𝑥  is the reference frame itself, 𝑐 

represents a constant accounting for material properties and 

spatial dimensions and 𝐟(𝒙, 𝑡) is a given body force density.  

Now because we wish to make this a time dependent problem 

we must add in a temporal derivative, making our differential 

equation take the form: 

 

 

[1] 

 

where 𝑎1 and 𝑎2 are problem specific constants and 𝛿 is the 

horizon length. 

 

 

In equation [1] we notice that the domains Ω and Γ were 

defined without really being explained.  One thing that we 

must recognize with nonlocal problems is that with the 

inclusion of  the horizon, we have integrals that extend past the 

ends of  our domain.  So assuming that 𝛾 and 𝛽 represent the 

left and right hand sides of  our domain respectively, we have 

the regions: 

 

[2] 

 

Using this information, we see that Ω represents the actual 

domain we would like to define our solution on and Γ is the 

region extending past the domain in an attempt to enforce 

“Dirichlet” boundary conditions.  The value of  these functions 

is assumed to be known using the function 𝑔(𝑥). 
 

After defining our equation, the next step is to apply the 

Galerkin finite element approach to discretize this problem to 

solve for the solution to the differential equation as a linear 

combination of  a set of  unknowns and basis functions.  Using 

this technique and approximating the temporal derivative with 

the backwards difference method, we can find that the weak 

form of  our solution becomes: 

 

 

 

  

Plus some known boundary condition data.  Unfortunately if  

we simply use this as the weak formulation to construct our 

linear system and solve for our unknown solution vector, we 

will encounter some stability problems.  It can be shown that 

when this approach is approximated with a quadrature rule, it 

creates an unstable system due to the setup of  the second 

term.  Fortunately, we can modify the second term in such a 

way that the system is stable.  Modifying this weak form leaves 

us with the fully discrete weak formulation: 

 

 

[3] 

 

Figure 2. Solution to 

differential equation at 

various time steps 

using method of 

manufactured solutions 

where: 

The final piece of  the puzzle is now to form our reduced order 

solution to the nonlocal equation using our reduced basis 

functions.  From figures [4]-[6] we can see that our reduced 

basis functions are no longer compactly supported like our 

piecewise linear basis functions.  In fact, the reduced basis 

functions are defined over the entire domain, Ω.  This means 

that our linear system will no longer be banded with respect to 

the choice of  basis function and the horizon size.  In general, 

our resultant linear system will now be small and dense.  The 

advantage comes in to play with the fact that our reduced basis 

functions have knowledge of  how the solution behaves with 

respect to input parameters.  Thus we hope that the number of  

basis functions it takes to represent the solution is small so that 

it is more efficient to solve a small dense linear system than a 

large banded system. 
 

To start off, we will define our reduced order solution as a 

linear combination of  a set of  unknowns and the  reduced 

basis functions which are in turn, a linear combination of  the 

basis vector values and the piecewise linear basis functions: 

 

 

where 𝜎𝑘 is the set of  unknown values that we will solve for 

and Ψ are the reduced basis functions themselves. 
 

Now that we have defined our reduced basis functions, we 

simply have to substitute in the new definition of  said basis 

functions into our fully discrete weak formulation.  We recall 

that when formulating the weak form of  the nonlocal 

equation, we were required to make some modifications in 

order to account for stability in the linear system.  Fortunately 

all the assumptions we made, still hold for the reduced basis 

case, so we can write the second term in our reduced order 

weak formulation as: 

 

 

 

 

 

The remaining terms are straightforward to implement and has 

been done numerous times in many works associated with 

ROM.  To complete our new weak formulation we have: 

 

 

 

and: 

 

 

 

 

Using this new weak formulation based off  of  the reduced 

basis functions, we can setup and solve a small dense linear 

system for the unknown coefficients, 𝜎𝑘 .  Figures [7]-[10] 

illustrate some sample reduced order solutions to our 

differential equation with their unscaled counterparts. 

Figure [2] shows the exact and computed numerical solutions 

to the fully discrete weak formulation when we use piecewise 

linear basis functions with our horizon set to 𝛿 = 0.125.    

Using the exact solution and the computed solutions at a 

number of  discretization's we can calculate the rates of  

convergence as the resolution is increased.   

h Euclidean distance Error Rate 

0.25 2.508895e-002 

0.125 4.932741e-003 2.439799 

0.0625 1.025740e-003 2.093973 

0.03125 2.204433e-004 1.921912 
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Proper Orthogonal Decomposition 

Now that we have a set of  solutions computed for a given set 

of  input parameters the next step is to compute the reduced 

basis function. Because we stored our solutions in a column-

wise format, we extract the column space basis vectors from 

the 𝑈 matrix in the decomposition 𝐴 = 𝑈𝑆𝑉𝑇.  Figures [3]-[6] 

show the singular values and the first three basis functions 

respectively  

Figures [3]-[6]. 

Top left moving 

clockwise: 

singular values, 

first three 

reduced basis 

functions 

 

Figures [7],[9]: Unscaled ROM solutions (1,5 basis functions 

included) 

Figures [8],[10]: Scaled solutions (1,5 basis functions included) 
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