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INTRODUCTION 
Human life and diseases are inseparable. Diseases can be caused by 
our own bodies as they age and degenerate or by infectious pathogens.  
Our study is about infectious diseases, such as flu or sexually 
transmitted diseases. The simple model of progress of an epidemic in 
a large population divides the population into three different 
compartments: Susceptible, Infected, and Recovered (SIR). There are 
several important factors on modeling epidemic diseases such as the 
structure of the population representing the possible contact among 
individuals and the virus transmission, the time to recover from the 
disease, and life history of the virus affecting incubation time and 
infectiousness. The contacts can be modeled as a weighted, static or 
dynamic network; the virus transmission can be modeled as transition 
rates of becoming infected when in direct contact with an infectious 
person; the recovery can be expressed as rate at which the individual 
heals and becomes resistant to the disease. 

R0 Formulation 
The growth of a disease is usually expressed by the basic reproduction 
ratio R0 which is the average number of additional infections caused by 
a newly infected individual. The epidemic threshold is the separation 
point where a disease dies out or where it grows exponentially, it is at 
R0=1.  
The mean degree  <ĸ>, and mean-square degree <ĸ2>  of a network and 
the transition and recovery rate have been used to formulated R0, but 
<ĸ> and <ĸ2>  can be the same for two networks even though they 
have different epidemic behavior, thus the standard R0 is sometimes 
inaccurate as a predictor of the epidemic threshold. We formulate a 
more accurate R0 by using another property of connectivity network in 
addition to what other methods have used. By using Singular Value 
Decomposition methods, the matrix A can be written as:  
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Method 
We have used weighted dynamic networks as a representation of 
population structure and we represent these as weighted adjacency 
matrices. The transition and recovery rate are considered as 
independent random variables. The incubation times are also arbitrary 
variables based on the virus and disease behavior.  
We have used the continues time Markov process concept as well as 
forward Kolmogorov equation to formulate our model. The result is as 
a system of differential equations that describe the time-evolution of 
the probabilities of interest. Each individual in the network is 
represented by 3 probabilities or state vectors: 

Pi = [PI,i, PS,i, PR,i]
We rearrange the individual’s probability into 3 state vectors: 

PI = [PI,1, PI,2, ..., PI,N ]

PS = [PS,1, PS,2, ..., PS,N ]

PR = [PR,1, PR,2, ..., PR,N ]

PR,i = 1� (PI,i + PS,i).

Each individual is in one of the processes at each time step, so we only 
need to calculate one probability per person per time. 
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By combining, we get:  
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 β is the transition rate.  γ is the 
recovery rate. 

τSI is the incubation period of 
the infection process. 

A = U⌃V T

Matrix A can also be viewed as writing A as the sum of rank one matrices 
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By truncating this series after p terms, meaning that using the first p 
largest eigenvalues, we have an approximation to A, that captures the 
most significant features of the data. The rate of change is been 
calculated using the derivative definition. The slope m of the line 
through the first p eigenvalues is been used a metric of the rate changes. 
Therefor the R0 is been formulated as 
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Networks Cuto↵ values Slope of the line R0 R0

⇤

Barabasi-Alber 31 -0.4336 1.67 3.87

Erdos-Renyi 11 -0.4806 0.809 1.63

Watts-strogatz P=0.05 22 -0.18880 0.7545 3.9961

Watts-strogatz P=0.005 46 -0.0343 0.7272 21.20

Watts-strogatz 7 -0.0109 0.7272 66.71

Fig1:	  Eigenvalues	  of	  all	  Random	  Networks	   Fig2:	  Course	  of	  an	  epidemic	  

Table	  1:	  Slope	  of	  the	  line	  of	  	  first	  (C-‐value)	  eigenvalues	  and	  comparison	  of	  our	  R0*	  	  
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