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Introduction

The Cold-Ion model is the limit of the Vlasov-
Poisson equation as the electron temperature
becomes negligible compared to the ion temper-
ature. These equations are of particular interest
because a shock forms as a Cold-Ion plasma of
high density expands into a Cold-Ion plasma of
lower density. In particular, in the 1D case, it was
shown that the infinite spike forms as the solution
of the Cold-Ion model becomes multi-valued, which
is exhibited in the behavior of the Vlasov-Poisson
equation with low electron temperature. It is shown
in the asymptotic analysis of the linearized Cold-Ion
model that an infinite spike propagates through the
domain at x ≈ t. [1]

Figure 1: Plots depicting the expansion of high density cold
plasma into lower density cold plasma in 1D

For the purpose of this research, the behavior of the
shock in the expansion of cold-ion plasma for various
cases are studied.

The Cold-Ion Model

The non-dimensional model is given below:

∂n

∂t
+∇ · (n~v) = 0 (1)

∂~v

∂t
+ ~v · ∇~v = −∇φ (2)

∇2φ = eφ − n (3)

n denotes the plasma density, ~v denotes the plasma
velocity, and φ denotes the electrostatic potential.

Initial Conditions

Let Ω = Ω1 ∪ Ω2. Ω1 represents the portion of the
domain where the high density plasma initially re-
sides, Ω2 represents the portion of the domain where
the low density plasma initially resides. Ω represents
the entire domain of the problem.
The initial condition is given as:

n (~x, 0) =



1 if ~x ∈ Ω1

nr if ~x ∈ Ω2
~v (~x, 0) = ~0 (4)

nr denotes the plasma density ratio.

Computational Aspects

To model the expansion of cold plasma from high
density to lower density, numerical methods were
used to solve the partial differential equations.
Newton’s method was used with a second centered
finite difference approximation was used to solve
the nonlinear Poisson equation. The explicit Lax-
Friedrichs scheme was chosen to solve the nonlinear
hyperbolic portion of the system because of its
dissipitive nature as well as its ability to preserve
the monotonicity of the solution. Homogeneous
Neumann boundary conditions were implemented
to simulate an infinite domain.

The algorithm is computationally very expensive be-
cause Newton’s method ideally must be used every
time step of the simulation. However, it was found
that by time-lagging the Poisson solve by a set num-
ber of time steps, the computational cost can be
reduced. However, this method increases the trun-
cation error of the numerical solution. The time-lag
error incurred by this method is:

ε = L
∂∇φ
∂t

∆t +O
∆t2

 (5)

Where L is the positive integer time-lag parameter.

To reduce computation time, the multithreaded Su-
perLU package [2] was used to solve the matrix sys-
tem in parallel.

2D Expansion in a Box

Figure 2: The expansion of a square region of plasma with high
density into a plasma of low density from t=0 to t=80. Cold
plasma density (left), velocity field (center), and electric field
(right)

Conclusion

In this study, it can be concluded that in 2D, a spike
forms as a higher density cold plasma expands into a
cold plasma of lower density, similar to the 1D case.
This is to be expected because the Cold-ion model is
a generalization of the Euler equation coupled with
the Poisson equation for the electrostatic potential of
the fluid. However, the growth of the spike depends
on the amount of high density plasma present in the
initial condition.

Future Work

In the future, the bifurcations in the solutions of
the Vlasov-Poisson equation with very low electron
temperatures will be studied for various cases in one-
dimensional flow.
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