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Objectives

In this research we seek to:
•Develop a novel approach toward
characterizing steady-state and transient
behavior in fluid flows

•Design and implement an efficient and scalable
algorithm for such an analysis.

•Calculate the initial results of such an analysis
on a well-defined system of physical interest.

Introduction

In the regimes of astrophysics and high-energy den-
sity physics, systems under study often exhibit in-
credibly complicated fluid flow patterns that arise
from a variety of physical processes, with the relative
importance of such processes often being shrouded
due to the inherent nonlinearity of the system. In
order to work around such issues, we have developed
a method to describe the state of such a system as
the linear combination of time-invariant empirical
eigenfunctions, with associated time-dependent co-
efficients. Analysis of such eigenfunctions and tem-
poral coefficients allows us to gain insight into which
processes dominate throughout the time evolution of
the fluid simulation. Further, such analysis allows
us to characterize transients in the system where
the time-invariant eigenfunctions fail to accurately
approximate the solution.

Figure 1: Explosion time entropy distribution in a core collapse
supernova simulation (Handy, Plewa, & Odrzywołek 2013)

The Hurlburt Problem

Before development of our analysis tool, we must de-
sign a setup for our numerical experiments in which
the interplay of the various physical processes oc-
curs in a well understood manner. To this end, we
adopt the model first proposed by Hurlburt et al.
in 1986. In such a setup, two layers of fluid stable
against convection s̈andwichä layer that is convec-
tively unstable. The initial profiles of the state vari-
ables temperature, density and pressure are given as
polytropes as a function of depth in the form
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Where Ki is the coefficient of thermal conductivity
for each layer i, judiciously selected such that the
Schwarzschild criterion for convective instability,
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is satisfied only for the central layer, where Cp is
the specific heat of the fluid at constant pressure,
FT is the thermal flux at the bottom of each fluid
layer, and g is the uniform downward gravitation
acceleration acting on the fluid.
These initial conditions are implemented within the
FLASH Astrophysics code, which then evolves the
system of extended Euler equations until the system
relaxes and and a steady state solution is acheived.

Figure 2: Pre-Steady State Evolution of the Hurlburt Setup

Singular Value Decomposition

In seeking to describe the solution of nonlinear equa-
tions as the linear combination of a finite number of
modes, we must first select basis functions on which
to project our solution. A great deal of work has
previously gone into this problem within the fields
of model reduction, and it has been shown that using
a basis of empirical eigenfunctions derived from the
solution matrix provides the optimal basis, a method
known as Proper Orthogonal Decomposition.
To compute this basis, we utilize the method of snap-
shots as proposed by Sirovich , begining with amxn
matrix D of our solution data, where each column is
the linearized solution matrix at each of n snapshots.
We then mean center the data, by subtracting the
time-averaged value of each row from each element
within that row such that

D̃ = D − D̄ (3)

From D̃, we can make substantially computational
savings by calculating the SVD indirectly, using the
covariance matrix

C = D̃D̃T (4)

Yielding, an n× n array, reducing the problem size
immensely, as m >> n. We then compute the right
eigenvectors of C;U , which can be used to calculate
the optimal orthogonal basis on which to project our
solution; V T , through the following equation.

UTC = ΣV T (5)

We can then approximate each column of C with
the linear combination of dominant eigenmodes of
V T (ranked according to the magnitude of the cor-
responding eigenvalue) along with least squares co-
efficients in the form

Ci ≈ αiV
T (6)

SVD Derived Basis Functions

A subset of the computed basis functions of one of
our numerical experiments is presented below, fol-
lowed by the eigenvalue spectrum for all computed
eigenmodes.

Figure 3: Four dominant eigenmodes of our Hurlburt simulation

Figure 4: Energies associated with computed eigenmodes

Here we see that the vast majority of the informa-
tion within the system can be ascribed to one of
the first few eigenmodes, allowing us to truncate the
linear expansion after as little as two terms, yet still
describe the solution from which these eigenmodes
were computed in an accurate manner.

Conclusions and Future Work

In this work, we have demonstrated our technique
for decomposing solutions of nonlinear systems into
a linear combination of empirical eigenfunctions.
Our work thus far has been limited to trial systems
or unperturbed models, but the full potential of such
a method of analysis will only be realized once per-
turbed fluid models are characterized in such a man-
ner, with our method allowing us to identify any sub-
tle transients phases via analysis of of our calculated
time-dependent coefficients.


