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Abstract This research extends an existing method for the simplification and the visualization of vector fields based on the notion of
Centroidal Voronoi Tessellations (CVT) to time dependent problems. A CVT is a special Voronoi tessellation for which the generators of
the Voronoi regions in the tessellation are also the centers of mass (or means) with respect to a prescribed density. A distance function
in both the spatial and vector spaces is introduced to measure the similarity of the spatially distributed vector fields. Based on such a
distance, vector fields are naturally clustered and their simplified representations are obtained. The method combines simple geometric
intuition with the rigorously established optimality properties of the CVT. The algorithm, originally designed for static problems, will be
implemented to apply to continuous problems. It will be developed and tested using solutions to the Burgers equation.

———————————————————————————————————————————————————————————————————————————————————————————————————–

Introduction

Large and complex data sets are being generated at an enormously fast speed with the advent of
modern computing technology. Effective strategies for data mining that include the representation,
simplification, characterization and manipulation of data become increasingly important.

It has always been a computational challenge to visualize large sets of vector fields including those col-
lected from various scientific and engineering disciplines. Here, we propose a clustering/segmentation
method for the vector fields based on the notion of Centroidal Voronoi tessellations (CVTs) [Du et
al. 1999]. CVTs are optimal tessellations of a given domain and they also give rise to a global
approach to cluster a domain into Voronoi regions.

Roughly speaking, for the spatially distributed vector fields of interests to us here, they can be
thought as some vector bundles (or fibers) defined in a spatial domain. However, it is more natural
and more convenient to treat such vector bundles and the spatial domain together as elements
of a higher dimensional manifold equipped with a suitably defined distance (metric). Then, one
may obtain, from the higher dimensional distance, a centroidal Voronoi tessellation that defines
the clusters of the spatial domain. Then a lifting operation can be applied to obtain the vector
representations of the vector fields distributed in each spatial clusters.

Centroidal Voronoi Tessellations

Given an open set Ω ⊆ RN , the set {Vi}ki=1 is called a tessellation of Ω if Vi ∩ Vj = ∅ for i 6= j

and
⋃k
i=1 Vi = Ω where Vi and Ω denote the closures of Vi and Ω. Let d denote a distance defined

on RN . Given points {zi}ki=1 belonging to Ω, the Voronoi region (or cluster) V̂i corresponding to
the point zi is defined by

V̂i = {x ∈ Ω|d(x, zi) < d(x, zj) for j = 1, ..., k, j 6= i}. (1)

The points {zi}ki=1 are called generators. The set {V̂i}ki=1 is a Voronoi tessellation or Voronoi

diagram of Ω, and each V̂i is referred to as the Voronoi region corresponding to zi.

Figure 1: Example of a rectangular domain split into six Voronoi clusters. The generators for each
cluster are shown in black.

Vector fields clustering

Given a positive scaling constant w, define the (one-sided) distance between p = (xp, yp) and
m = (xm, ym) as

dp(p,m) =

√
|yp|2 − |yp|yp · ym + w|yp|2|xp − xm|2. (2)

Then, given a set of k generators {mi}ki=1 under the constraint |ymi| = 1, the Voronoi regions {Ĉi}
corresponding to the point {mi} are defined by

Ĉi = {xp ∈ Ω|dp(p,mi) < dp(p,mj) for j = 1, ..., k, j 6= i}. (3)

It is obvious that Ĉi ∩ Ĉj = ∅ if i 6= j. For some p that satisfies dp(p,mi) = dp(p,mj) for two

distinct generators mi 6= mj, we then assign p to the Voronoi region Ĉi if |xp− xmi| < |xp− xmj|.

Using the definition of dp and given a cluster C, the centroid m∗ is obtained as the minimizer of
the energy

E(m,C) =

∫
C
|yp|2 − |yp|yp · ym + w|yp|2|xp − xm|2dxp. (4)

Examples

Figure 2: A vector field that was separated into six Vonoroi regions.

Figure 3: A vector field with vectors of different length separated into ten Vonoroi regions.

Figure 4: A 3D vector field with vectors of different length separated into 36 Vonoroi regions.

Future Work

At the current time the method has only been used on static problems. The algorithm will be
extended to apply to time dependent problems. The new algorithm will use CVT for the visualization
of a fluid flow.

Finite element solutions of the Burgers’ equation (5) over different domains will be used for imple-
mentation and testing purposes. The Burgers’ equation is
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where u = u(t, x, y) is a function of time and space, v1 and v2 are the convection coefficients, µ(x, y)
is the diffusivity field, and f (x, y) is the forcing term.
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