
2015 Computational Xposition 10 April 2015

K-mer matching using the Automata
processor in de novo DNA assembly

Michael Conry
Advisor: Dr. Alan Lemmon

Florida State University

Abstract De novo assembly of post-sequencing DNA reads is a complex computational task requiring the comparison of a massive amount of sequenced
reads against reference sequences. To date, there have been attempts at constructing heuristic algorithms to cut down on the intense computational
demands when using a traditional CPU as well as implementation of the algorithms on other architectures such as GPUs.

This study analyzes the application of a novel non-Von Neumann memory hardware, Micron’s Automata Processor(AP), which is theoretically capable
of dramatically reducing computation time through hardware based massively parallelized pattern matching1. We convert 20-mer DNA sequences into
abstract mathematical models known as a non-deterministic finite automata and use the Automata Simulator to match them to an input stream. By
estimating the drastic decrease in computation time required and demonstrating the benefits of the exhaustive nature of the pattern matching technique
we attempt to show the advantages of using this device in place of a traditional CPU.

Introduction
One of the most computationally time consuming tasks in bioinformatics is the de novo assembly of se-
quenced short reads into longer consensus sequences. Longer consensus sequences provide more information
about the genes in question and phylogenetic software will often give highly inaccurate results if the se-
quences are too short. Unfortunately, building these consensus sequences involves matching billions of bases
together and storing the results, often exhausting both processing power and memory. There have been
many promising software assemblers such as Bowtie2, which uses the Burrows-Wheeler transformation to
align reads to a reference geneome. However, in this study we are focusing on a novel hardware solution
instead.

The Automata Processor(AP) is an alternative to traditional Von Neumann architecture CPUs and boasts
groundbreaking parallelized pattern matching speeds. It achieves these speeds through parallelized hard-
ware implementation of an abstract mathematical model known as Non-Deterministic Automata(NFA).
Automata are state machines that are governed by their transition function. They are often represented
by circles (states) and arrows (transitions) between them. When an Automaton is fed an input symbol it
moves from the state it was at to a new (or back to the same) state based on the transition function.

Figure 2 is a representation of an NFA, which is a special type of state machine that can allow more than one
active state at a time. NFAs can be easily made to represent text patterns (or most other data) to query a
larger text. Because of the ability to be at multiple states at a time, NFAs implemented on the AP can check
large streams of data for matching patterns in parallel faster than high performance computing clusters and
can solve previously unsolved NP-hard problems3. When using the Automata Processor the computation
time is a result of the complexity of the NFA, the rate of activation of reporting states, and the length of
the input stream. Each input symbol (in our case a nucleotide base) is processed at 7.5 nanoseconds.

To solve the assembler bottleneck, we aim to use the AP hardware as a preprocessor to match k-mers
(k length sequences of DNA) to sequenced reads. By performing this step on the AP hardware we can
drastically reduce the most computationally complex step of the post sequencing process. Herein, we show
the results of using the AP Simulator to test and design automata and to estimate computation time for
different sizes of DNA sequences.

Assembly Workflow using Automata Processor

Fig. 1

This workflow demonstrates how the k-mer matching done on the AP can fit into our DNA assembly
pipeline. Currently, the reads are gathered from the sequencer, then merged and assembled using programs
run on traditional CPUs. The assembly section is the largest computational bottleneck in the process, but
by using the AP we can reduce the runtime from hours to minutes on average.

To achieve this, a k-mer database is built from existing references and the reads themselves. Then, those
k-mers (ranging from 20 to 25 bases) are compiled onto the AP hardware as distinct automata as shown in
figure 2. The merged reads are provided as an input stream (Gigabases in size) which are scanned by the
AP hardware, attempting to find matches to all the k-mers in parallel.

Once those matches are found their locations and k-mer id are reported. Finally, this information is fed
back into the traditional assembly software to combine the reads into assembled sequences. This process
can work for reference mapped assembly or de novo assembly.

Automata Design

Fig. 2

The above automaton is an example of an NFA consisting of 11 nucleotides which is being fed a small input
stream of 1000 DNA bases. Constructed in the AP Simulator, the automaton allows up to 3 mismatches.
Each mismatch causes the current state in the automaton to transition down two rows. Because the hardware
can match the pattern to the input stream in parallel, it attempts to match each new character as if it is
the beginning of the pattern. The green states indicate the active states while the red indicates a dead-end.
A match is reported if the automaton reaches the right most states before encountering four mismatches.

The reporting states at the right of the graph have unique ids that are reported when a match is found.
This allows one to know how many mismatches were encountered (from 0 to 3), which k-mer was matched,
and what position it’s found at in the input stream.

In our testing we created much larger 20-mer automata that were matched against a 1.5 million base DNA
sequence. The number of k-mers is limited by the number of State Transition Elements (STE) allowed on
the hardware (around 1.5 million STEs using the single board hardware configuration). The number of
STEs used by our mismatch automaton is defined by l ∗ (2d + 1) − d2 where l is the length of the k-mer
and d is the number of mismatches allowable.3 Thus, a 20-mer allowing 3 mismatches will use 131 STEs
giving us space for around 11,450 k-mers.

Estimated Computation Time

Table 1

The table above details the estimated time required to exhaustively match the k-mers to the input streams
of various sizes. Since the automata all match in parallel, the time required is almost entirely governed by
the input stream size and does not depend on the number of k-mers. The hardware’s input stream speed is
1 Gbit/second. In addition to this computation cost there is also a reporting cost of 2.5-40 symbol cycles
(depending on the size of the information reported) when a reporting state is reached.

Conclusion
Using the AP Simulator, we have shown that the AP hardware will reduce computation costs drastically
while still providing an exhaustive search of our data for k-mer matches. However, during our analysis we
did not have access to the AP hardware, so there are possible unknown issues that will need to be overcome
when the hardware is accessible such as automata compile time and reporting state costs. In addition to
the assembly process, we believe the AP hardware will be useful when mapping reads in sequencer probe
design.

References

• 1. P. Dlugosch, et al., ”An efficient and scalable semiconductor architecture for parallel automata pro-
cessing”, IEEE Transactions on Parallel and Distributed Systems, 2013

• 2. B. Langmead, et al., ”Ultrafast and memory-efficient alignment of short DNA sequences to the human
genome”, Genome Biology, 10:R25, 2009.

• 3. I. Roy, S. Aluru, ”Finding Motifs in Biological Sequences Using the Micron Automata Processor”,
Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, p.415-424, 2014.


