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Abstract

The numerical solution of a space-time fractional diffusion equation used to model the anomalous diffusion
is considered. Spatial discretization is effected using a finite element method whereas the θ-scheme is used for
temporal discretization. The fully discrete scheme is analyzed for all 0 ≤ θ ≤ 1 to determine conditional and
unconditional stability regimes for the scheme and also to obtain error estimates for the approximate solution. The
analysis is facilitated by making use of a variational formulation of the equations that is based on a recently devel-
oped nonlocal calculus. One-dimensional numerical examples are provided that illustrate the theoretical stability
and convergence results.

Introduction
Space-time fractional diffusion equations are used as models for anomalous transport in many disci-
plines such as hydrogeology, biology, etc. For flow in porous media, the space fractional derivative
comes from particles having large movements through fractures in the media, and time fractional
derivative comes from particles remaining stationary for long time. In this paper, we consider the
space-time fractional diffusion equation

∂αu

∂tα
= −c2Lu + f (x, t), x ∈ ΩI (1)

u(x, t) = 0, x ∈ ΩB, t ∈ [0, T ]

u(x, 0) = u0(x), x ∈ ΩI ,

where L denotes the space-fractional operator

Lu =

∫
B(x,δ)

u(x, t)− u(y, t)

|x− y|d+2s
dy, 0 < s < 1,

where δ > 0, and where ΩI ⊂ Rd is a convex open bounded subset with piecewise smooth boundary,
Ω = {x ∈ Rd | d(x,ΩI) ≤ δ}, ΩB = Ω/ΩI , and Q = ΩI × (0, T ].
There are several definitions available for time-fractional derivatives, we use the Caputo fractional
derivative of order α defined by

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, η)

∂η

dη

(t− η)α
, 0 < α < 1, (2)

where Γ(·) denotes the gamma function. Letting ∆t = T/N , tn = n∆t for n = 0, 1, . . . , N , and
Dtu(x, tn) = u(x, tn+1)− u(x, tn), an approximation to the factional derivative is given by

∂αu(x, tn+1)

∂tα
=

1

Γ(1− α)

n∑
i=0

∫ ti+1

ti
(tn+1 − η)−α

∂u(x, η)

∂η
dη

≈ 1

Γ(1− α)

n∑
i=0

Dtu(x, ti)

∆t

∫ ti+1

ti
(tn+1 − η)−αdη + O(∆t)

=
∆t−α

Γ(2− α)

n∑
i=0

biDtu(x, tn−i) + O(∆t),

(3)

where bi = (i + 1)1−α − i1−α for i = 0, 1, · · · , n.
Here, we provide a stability analysis of fully discrete approximations of (1) for which θ schemes and
finite element methods are used for temporal and spatial discretizations, respectively. If θ = 0, the θ
scheme becomes an explicit scheme. Additionally, we provide convergence analyses. In contrast with
the classical diffusion equation, we see from (3) that u(x, tn+1) not only depends on u(x, tn), but also
depends on all former u(x, ti), i = 0, · · · , n − 1. This poses some difficulties in obtaining stability
results. However, for implicit schemes, using the classical method described in [1] does allow us to
obtain the unconditional stability result. However, that approach is not useful for θ schemes. Instead,
using the matrix analysis given in [2], we develop a new method to solve the stability problem.

Stability of the θ schemes
We subdivide the spatial domain ΩI by a quasi-uniform triangulation Th and use the corresponding
continuous piecewise-linear finite element

Vh := {vh ∈ C0(Ω), vh|ΩB
= 0, and vh|τ ∈ P1 ∀ τ ∈ Th}.

Then, with {φj}Jj=1 denoting the usual linear basis function for Vh, we have the approximations

uh(t, x) =

J∑
j=1

uj(t)φj(x) and unh =

J∑
j=1

uj(tn)φj(x).

Let β = c2Γ(2− α) and
un+θ
h = θun+1

h + (1− θ)unh, 0 ≤ θ ≤ 1.

Then, using (3), we define the full space-time discretization of (1) by

( n∑
i=0

biDtu
n−i
h , vh

)
= −β∆tαa(un+θ

h , vh) + Γ(2− α)∆tα(fn+θ, vh) (4)

for all vh ∈ Vh and for n = 0, . . . , N − 1 along with the initial condition approximation

a(u0
h, vh) = a(u0, vh),

where letting

γ(x, y) =


1

|y − x|d+2s
, |y − x| ≤ δ

0, |y − x| > δ,

the bilinear form

a(u, v) =
1

2

∫
Ω

∫
Ω
γ(x, y)(u(x)− u(y))(v(x)− v(y))dydx.

and fn+θ = θf (tn+1, x) + (1− θ)f (tn, x).
In the sequel, we denote the L2 norm by ‖ · ‖. Also, M and K denote the symmetric, positive
definite mass and stiffness matrices associated with (4), i.e., we have that Mjj′ = (φj, φj′) and
Kjj′ = a(φj, φj′) for j, j′ = 1, . . . , J . The eigenvalues of M and K can be evaluated by Gershgorin
circle theorem. We then have the following stability result.

Theorem 1. The scheme (4) is unconditionally stable for θ ≥ 1/(2 − b1). For θ < 1/(2 − b1), it is
stable if

∆tα ≤ 2− 2b1
1− (2− b1)θ

· 1

β
· λmin(M)

λmax(K)
,

where b1 = 21−α − 1 and β = c2Γ(2− α).

Remark 1. As in [4], for the one-dimensional case and a sufficiently small uniform mesh size h, we
have the stability condition for the explicit scheme θ = 0 given by ∆tα/h2s = O(1).

Convergence of the θ schemes
Here we use a variant of the discrete θ scheme (see (4)) given by ∆t1−α

Γ(2− α)

n∑
i=0

bi
Dtu

n−i
h

∆t
, vh

 = −c2a(un+θ
h , vh) + (fn+1, vh) (5)

for n = 0, . . . , N − 1; note that we have merely replaced fn+θ in (4) by fn+1. Also, recall that
u(x, tn) denotes the solution of (1) evaluated at t = tn, we have the following convergence result.

Theorem 2. Assume that u is sufficiently smooth and, if ∆t satisfies the stability conditions in Theorem
1. Then,

max
1≤n≤N

‖u(·, tn)− uh(·, tn)‖ ≤ C(∆t + h2),

where C > 0 does not depend on ∆t or h.

Remark 2. For θ = 1, as in [3], we obtain

max
1≤n≤N

‖u(·, tn)− uh(·, tn)‖ ≤ C(∆t2−α + h2),

where C does not depend on ∆t or h.

Remark 3. The stability and convergence analysis given above can also be applied to the time-
fractional diffusion equation

∂αu

∂tα
= −c2∆u + f (x, t). (6)

In particular, we obtain the stability result for 0 ≤ θ < 1 that, to our knowledge, has not previously
been given in the literature.

Numerical Results in 1-D
Take equation (6) as an example, where u(x, t) = t2(−x4 + x3), c2 = 1 using scheme (5), we have
a) Errors and convergence rates at the final time T = 1 for the model parameters h = 1/17 and θ = 0

α ∆t L2 error ∆t L2 error Prediction ∆t
0.9 1/3900 6.2221e-05 1/3800 5.9529e+22 1/3968

0.99 1/1820 9.9938e-05 1/1800 6.2537e+05 1/1825
0.999 1/1700 1.0501e-04 1/1690 2.6022e+08 1/1704

b) Errors and convergence rates at the final time T = 1 for the model parameters α = 0.6 and θ = 1

h ∆t L2 norm error rate
1/512 1/4 3.7920e-04 -
1/512 1/8 1.4732e-04 1.3640
1/512 1/16 5.6714e-05 1.3772
1/512 1/32 2.1721e-05 1.3846
1/512 1/64 8.3000e-06 1.3879
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