

A Multiscale Implementation for Nonlocal Model in 1D

Department of Scientific Computing

Feifei Xu, fx11@my.fsu.edu Max Gunzburger, John Burkardt, Qiang Du

The Nonlocal Model

Nonlocal volume-constraint problem

• The nonlocal volume-constrained problem is given by

 $\begin{cases} -\mathcal{L}(u(\mathbf{x})) = f(\mathbf{x}), & \mathbf{x} \in \Omega \\ u(\mathbf{x}) = g(\mathbf{x}), & \mathbf{x} \in \Omega_{\mathcal{I}} \end{cases}$

where $\mathcal{L}u = 2 \int_{\mathbb{R}^n} (u(\mathbf{x}') - u(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{x}') d\mathbf{x}', \gamma$ denotes a symmetric kernel, i.e., $\gamma(\mathbf{x}, \mathbf{x}') = \gamma(\mathbf{x}', \mathbf{x})$ for all \mathbf{x}, \mathbf{x}' .

The kernel

• We consider kernels of the form

 $1 - 1s \qquad 1$

Adaptive Refinement Algorithm

Algorithm 6.1()

Input: Dörfler marking parameter $\theta \in (0, 1]$, a grid size h, a uniform triangulation \mathcal{T}_0 of Ω into elements of size h, a set \mathcal{P}_0 of nodes consisting of \mathcal{T}_0 . Initialization: k = 0; foreach element K in \mathcal{T}_0 do set Group(K) = 1; while *true* do 1. foreach node p in \mathcal{P}_k , the set of nodes consisting of \mathcal{T}_k do if p is an endpoint of a Group 1 element K, set p as a PD-DG node; elseif p is an endpoint of an element within the δ -neighborhood of any Group 1 element, set p as PD-CG node; otherwise, set p as PDE-CG node; 2. using the triangulation \mathcal{T}_k , solve the multiscale problem for $u_k^h(x)$;

$$\gamma(\mathbf{x}, \mathbf{x}') = \frac{\mathbf{1} - \mathbf{1} \mathbf{5}}{\delta^{2-2s}} \frac{\mathbf{1}}{|\mathbf{x} - \mathbf{x}'|^{n+2s}} \mathbb{1}_{H_{\mathbf{x}}},\tag{1}$$

where n denotes the spatial dimension, s a constant, 1 the indicator function, $H_{\mathbf{x}} = \{ \mathbf{x}' \in \mathbb{R}^n : |\mathbf{x} - \mathbf{x}'| \leq \delta \}, \text{ and } \delta > 0 \text{ the horizon. If } s < 0, \text{ the kernel} \}$ (1) is integrable, i.e., we have that, for some constant $c^*(\delta) > 0$ whose value depends on δ ,

> $\int_{\mathbb{T}^n} \gamma(\mathbf{x}, \mathbf{x}') d\mathbf{x}' \leq c^*(\delta) < \infty \quad \forall \mathbf{x} \in \Omega.$ (2)

A Multiscale Implementation

A multiscale implementation of the PD model would start with a choice for the bulk grid size h and a horizon parameter δ and then include the following components:

- 1. detection of elements that contain a discontinuity in the displacement;
- 2. refinement of the grid as necessary near the discontinuities;
- 3. use of DG for PD in regions containing the discontinuity;
- 4. use of CG for PD in regions neighboring the discontinuity;

3. foreach element K in \mathcal{T}_k do compute the error indicator $\eta(u_k^h, K)$; 4. define the set \mathcal{M}_k of elements contributing the proportion θ of the total error, i.e., $\eta^2(u_k^h, \mathcal{M}_k) \geq \theta \eta^2(u_k^h, \Omega)$, with a minimal cardinality; 5. foreach element K in \mathcal{T}_k , do $\operatorname{Group}(K) = 1$ if $K \in \mathcal{M}_k$, else Group(K) = 2;6. create triangulation \mathcal{T}_{k+1} of the Group 2 elements with coarsened O(h) mesh; 7. if all Group 1 elements have size $O(h^4)$ then do steps 1, 2, and 3 again with the coarsened final grid and then break; 8. modify triangulation \mathcal{T}_{k+1} by refining Group 1 elements; 9. set $k \coloneqq k+1$; end

Numerical Results

The manufactured solution used is given by

$$u(x) = \begin{cases} x & \text{if } x < \widetilde{x} \\ x^2 & \text{otherwise,} \end{cases}$$

We set the discontinuity in the solution to be located at $\tilde{x} = 0.503$ and apply Algorithm 6.1 with $\delta = 0.02$ and kernel $\gamma = \frac{3}{2\delta^3} \mathbb{1}_{H_{\mathbf{x}}}$.

5. use of CG for PDE if sufficiently far away from the discontinuity;

6. use of quadrature rules that can be applied for any combination of h and δ .

Posterior error estimator

For any element K in a mesh, the residual error is defined as

 $R^{h}(\mathbf{x}) = f(\mathbf{x}) - \mathcal{L}(u^{h}(\mathbf{x})) \quad \forall \mathbf{x} \in K.$

If γ satisfies (1) with $s \in [0, 1)$, the posterior error is defined by

$$\widetilde{\eta}(u^{h}, K) = h^{2s} \|R^{h}\|_{L^{2}(K)}, \qquad (3)$$

where s is defined in (1). For kernels satisfying (2), the posterior error estimator now takes the form

$$\widetilde{\eta}(u^h, K) = \frac{\|R^h\|_{L^2(K)}}{\sqrt{c^*(\delta)}},$$

where $c^*(\delta)$ is defined in (2). The total error estimator over $\Omega = (a, b)$ is then given by

$$\widetilde{\eta}(u^h, \Omega) = \left(\sum_{K} \widetilde{\eta}^2(u^h, K)\right)^{1/2}.$$

To be able to detect the elements containing points at which the solution is discontinuous, we also define the *grid-size weighted* posterior estimators

The following tables present the numerical results for several errors, e.g., L^2 error, H^1 error, L^{∞} error, energy error and posterior error $\tilde{\eta}$. N_0^n is the initial number of nodes.

errors and convergence rates including all elements											
N_0^n	$\ \ e^h \ _{L^2}$	CR	$ \ e^h \ _{L^{\infty}}$	CR	$ e^h $	CR	$ \widetilde{\eta}(\Omega)$	CR			
5	8.74e-3	_	1.29e-1	—	5.59e-1	_	5.53e-1	_			
9	2.19e-3	1.98	1.37e-1	-0.08	1.41e-1	1.97	1.37e-1	2.00			
17	5.24e-4	2.06	1.35e-1	0.02	3.66e-2	1.95	3.47e-2	1.98			
33	1.29e-4	2.01	1.35e-1	0.00	1.08e-2	1.76	1.12e-2	1.64			
65	3.12e-5	2.05	1.38e-1	-0.03	2.49e-3	2.12	2.44e-3	2.19			
129	7.87e-6	1.99	1.37e-1	0.01	6.32e-4	1.98	6.35e-4	1.94			
257	1.92e-6	2.05	1.64e-1	-0.26	1.56e-4	2.03	1.55e-4	2.04			

errors excluding the element containing the discontinuity										
N_0^n	$\ \ e^h\ _{L^2}$	CR	$\ e^h\ _{L^{\infty}}$	CR	$ e^{h} _{H^1}$	CR				
5	7.49e-3	—	1.50e-2	—	1.01e-1	_				
9	1.89e-3	1.97	3.82e-3	1.96	5.06e-2	0.99				
17	4.58e-4	2.05	9.57e-4	2.00	2.53e-2	1.00				
33	1.09e-4	2.07	2.39e-4	2.00	1.26e-2	1.00				
65	2.66e-5	2.04	6.00e-5	2.00	6.32e-3	1.00				
129	6.75e-6	1.98	1.50e-5	2.00	3.16e-3	1.00				
257	1.64e-6	2.06	3.76e-6	2.01	1.58e-3	1.01				

The figures below show the plots of the numerical solutions at the initial and final step of the adaptive algorithm for h = 1/8.

$$\eta^{2}(K) = \frac{\widetilde{\eta}^{2}(K)}{|K|} \quad \forall K \in \mathcal{T}_{k} \quad \text{and} \quad \eta^{2}(\Omega) = \sum_{K \in \mathcal{T}_{k}} \eta^{2}(K), \quad (4)$$

where |K| denotes the length of the element K. Let $\hat{K} \in \mathcal{T}_k$ denote an element that contains a point at which the solution has a jump discontinuity, we now have \sim

$$\eta^2(\widehat{K}) = \frac{\widetilde{\eta}^2(K)}{|\widehat{K}|} = \frac{O(h_{\widehat{K}})}{h_{\widehat{K}}} = \frac{O(h^4)}{h^4} = O(1) \qquad \text{as } k \to \infty$$

and

$$\eta^{2}(K) = \frac{\tilde{\eta}^{2}(K)}{|K|} = \frac{O(h^{4})}{h} = O(h^{3}) \quad \text{as } k \to \infty,$$

