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Nonlocal volume-constraint problem Algorithm 6.1()
Input: Dérfler marking parameter 6 € (0, 1], a grid size h,
a uniform triangulation 7y of €2 into elements of size A,
a set Pp of nodes consisting of 7.
Initialization: k = 0; foreach element K in Ty do set Group(K ) = 1;

while true do
1. foreach node p in Py, the set of nodes consisting of T do if p is an

endpoint of a Group 1 element K. set p as a PD-DG node;:
elseif p is an endpoint of an element within the d-neighborhood of
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e The nonlocal volume-constrained problem is given by

{ —L (u(x)) = f(x),

u(x) = g(x

x € ()
X € Q1

o

where Lu = 2 [, (u(x") — u(x))y(x,x")dx’, v denotes a symmetric kernel,
ie., v(x,x") = v(x',x) for all x,x".

The kernel any Group 1 element, set p as PD-CG node;
e We consider kernels of the form otherwise, set p as PDE-CG node;
/ 1 — 15 1 2. using the triangulation 7, solve the multiscale problem for uﬁ(m);
v(x,x) = §52-25 |x — x/|nt2s 1 A (1) 3. foreach element K in T do compute the error indicator ?}(HE,K);

4. define the set M of elements contributing the proportion # of the
total error, i.e., n?(ul, Mg) > 6n?(u}, ), with a minimal cardinality;
5. foreach element K in T, do Group(K ) =1 if K € My,
else Group(K) = 2:
6. create triangulation 741 of the Group 2 elements with coarsened
(2) O(h) mesh;
7. if all Group 1 elements have size O(h*) then do steps 1, 2, and 3
again with the coarsened final grid and then break:
8. modify triangulation 71 by refining Group 1 elements;
9. set k =k 4+ 1:

where n denotes the spatial dimension, s a constant, 1 the indicator function,
Hx = {x' € R" : |x —x'| <}, and 6 > 0 the horizon. If s < 0, the kernel
(1) is integrable, i.e., we have that, for some constant ¢"(d) > 0 whose value
depends on 0,

/ v(x,x)dx < c"(§) <o Vxeq.
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end
O(h) O(h%) O(h)
A ¢ A
PDE-CG PD-CG PD-DG PD-CG PDE-CG

Numnerical Resutts

The manufactured solution used is given by

A multiscale implementation of the PD model would start with a choice for
the bulk grid size h and a horizon parameter 0 and then include the following

components: ’ N
T 1Hr <

1. detection of elements that contain a discontinuity in the displacement; u(x) = { 22 otherwise, (5)
2. refinement of the grid as necessary near the discontinuities; . o | N
9 £ DG for PD | . i the di - We set the discontinuity in the solution to be located at * = 0.503 and apply

. use o or in regions containin e discontinuity; _ . 3

© © g Algorithm 6.1 with 6 = 0.02 and kernel v = ~=1m,.
4. use of CG for PD in regions neighboring the discontinuity:; 20
5. use of CG for PDE if sufficiently far away from the discontinuity; The following tables present the numerical results for several errors, e.g., L°
1 o0 : ~ n - C .

6. use of quadrature rules that can be applied for any combination of A and 9. error, H* error, L™ error, energy error and posterior error 7. N is the initial

number of nodes.

X errors and convergence rates including all elements

For any element K in a mesh, the residual error is defined as 0 8.74e-3 _ 1.29-1 _ 0.09%-1 _ 0.03e-1 _
9 2.19e-3 | 1.98 1.37e-1 -0.08 1.41e-1 1.97 1.37e-1 | 2.00
Rh(x) = f(x) — E(uh(x)) Vx € K. 17 5.24e-4 | 2.06 1.35e-1 0.02 3.66e-2 1.95 || 3.47e-2 | 1.98
33 1.29e-4 | 2.01 1.35e-1 0.00 1.08e-2 1.76 1.12e-2 | 1.64
If ~ satisfies (1) with s € [0,1), the posterior error is defined by 65 || 3.12e-5 | 2.05 || 1.38e-1 | -0.03 || 2.49e-3 | 2.12 || 2.4de-3 | 2.19
129 7.87e-6 | 1.99 1.37e-1 0.01 6.32e-4 1.98 || 6.35e-4 | 1.94

~¢ h 2s h - - - - -

77(“ ,K) — h ||R HLQ(K)a (3) 257 1.92e-6 | 2.05 1.64e-1 0.26 1.56e-4 2.03 1.55e-4 | 2.04

errors excluding the element containing the discontinuity

Wherf iis f}elﬁrifed in (1). For kernels satisfying (2), the posterior error estimator N7 e, CR "= | CR || [¢"],;1 | CR
HOW Lakes LHE 10T | RN 5 749¢-3 | - 1.50e2 | — || 1.0lel | -

A(u", K) = LK) 9 1.89e-3 | 1.97 || 3.82e-3 | 1.96 || 5.06e-2 | 0.99

c*(0) 17 4.58e-4 | 2.05 || 9.57e-4 | 2.00 || 2.53e-2 | 1.00

o . . . 33 1.09e-4 | 2.07 || 2.39e-4 | 2.00 || 1.26e-2 | 1.00

where ¢*(0) is defined in (2). The total error estimator over 2 = (a,b) is then = 5 662-5 so0i 1@ 002_5 500 1@ 3223 700

given by o 120 || 6.75e-6 | 1.98 || 1.50e-5 | 2.00 || 3.16e-3 | 1.00

~/ h 2, h - - -
H(u”, Q) = ( i (u ,K)) | 257 || 1.64e-6 | 2.06 || 3.76e-6 | 2.01 || 1.58e-3 | 1.01

K

To be able to detect the elements containing points at which the solution is
discontinuous, we also define the grid-size weighted posterior estimators

The figures below show the plots of the numerical solutions at the initial and
final step of the adaptive algorithm for h = 1/8.
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2 ;':}/2 (K) 2 9 — exactl I exac{:
n (K) = VK Tk and n (Q) — Z n (K)’ (4) == approximate —— approximate
K] KeTy, 08/ 0.8
where | K| denotes the length of the element K. Let K € T; denote an element 0.61 0.6/
that contains a point at which the solution has a jump discontinuity, we now
have - ) 0.4f 0.4
200y _ M (K) _ Olhg)  O(RY)
n(K)=—— = = = 0O(1 as k — oo 0.2} 0.2}
()= Tt = = = S = o)
and 2(K) oY % 0.4 0.6 0.8 % 1
772(K) d O(h?’) as k — oo,



