
An Optimization-Based Model Coupling Method
Using Slightly Overlapping Subdomains

James Cheung, Dr. Max Gunzburger
Department of Scientific Computing
Florida State University
jc07g@my.fsu.edu

Abstract
In this research project, we explore the possibility of coupling two models together across a sharp interface

via an optimal control methodology. We present solutions for coupled Poisson equations with varying material
constants and forcing terms. For the test cases presented, a projection of the Neumann boundary condition at the
interface onto the discrete interface boundaries was used as the control parameter. Through visual evidence along
with preliminary numerical convergence studies, we have reason to believe that our proposed method will able to
accurately solve interface coupling problems.

Introduction
Many physical systems that must be modeled require more than one model to be solved on sepa-
rate subdomains of the problem region with a sharp interface condition that governs how a physical
quantity is conserved or transfered across the subdomain. Some examples of the problem of interest
are fluid-structure interactions, vessicle deformation in fluid flow, and Stokes-Darcy flow in Karst
aquafers. Unfortunately, in many cases, the sharp-interface coupling problems is unstable and it be-
comes difficult to find a numerical solution of the problem for this reason. Also, a direct solution of
the coupled problem can be expensive since the size of the matrix increases to accomodate for the
entire discretization of the problem to be solved.

In this research, we are investigating using an optimal control based method for solving the inter-
face coupling problem. Because of the instability of the problem described above, it is clear that
an optimization problem that minimizes the difference of the solutions at the interface will also be
unstable. To stabilize the interface coupling problem, we make an ε sized perturbation of the problem
subdomains to induce a small overlap at the interface. This small overlap may also be used to tie
unmatching discretizations together to avoid any voids regions that may occur. To reduce the cost
of the model coupling, we solve each model iteratively until the desired optimal control parameter is
achieved. It is hopeful that our method will allow us to use already existing code for each model used
in the interface-coupling problem so that minimal effort would be required to program our algorithm.

Our Method
Instead of solving the overlap problem directly, we decouple the models and use an iterative method
to minimize the cost functional
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By taking the Fréchet derivative of the Lagrange multiplier functional with resepect to ui, we derive
the adjoint equations
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By finding dJ δ,ε

dg through the first variation on the cost functional, we are able to derive the following
steepest descent algorithm to solve the optimization problem presented above.

Figure 1: An example problem domain.

Algorithm 1. Steepest Descent

1. Map Ωi→ Ωεi
2. Define the forcing functions and boundary conditions on Ωε

3. Set g0 to initial guess.

4. For n = 1, . . . , N
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5. Map Ωεi → Ωi

where α is defined as the step size. In this research, we use the finite element method to solve the
constraint and adjoint equations.

Numerical Convergence
In this section, we present numerical error convergence for our method. The exact solution of the
test problem used is u = sin(2πx) cos(π(y − 1/2)) in Ω1 = [−1, 0] × [0, 1] and u = 2 cos(π(x −
1/2)) cos(π(y − 1/2)) in Ω2 = [0, 1] × [0, 1]. It is found that there is an O(ε) error that is incurred
by an ε overlap at the interface. By setting ε = h2, we achieve first order convergence in H1(Ω)
and second order convergence in L2(Ω). This error convergence is typical for piecewise linear finite
element approximations.

Figure 2: Log-scale error plot. Left: O(ε) error. Right: O(ε) error, with ε = h2. Red data points: ||u − uε||H1(Ω). Blue
data points: ||u− uε||L2(Ω). The thick red line is a reference line with slope 2. The thick blue line is a reference line with
slope 1.

Figure 3: Left: Solution of the test problem obtained using interface overlap. Right Test problem where f1 = cos(xy)
and f2 = 0 with k1 = 1 and k2 = 10.

Forthcoming Research
The research presented on this poster is in its preliminary stages. In the future, we will explore more
complicated overlapping regions as well as modifying the cost functional. Once a robust and effective
method has been established, rigorous mathematical analysis of the method will be required.
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